Experimental and Numerical Study of Hydrodynamic and Heat Transfer Characteristics of Falling Film Over Metal Foam Layered Horizontal Tube

2021 ◽  
Author(s):  
Jayakumar Arjun ◽  
A. Mani

Abstract A novel non-intrusive technique based on air-coupled ultrasonic transducer was used to study the hydrodynamic behaviour of falling film over a metal foam layered horizontal tube. Copper foam having a porosity of 90.5%, brazed over a copper tube of 25.4 mm diameter was used in this study. Falling film thickness distribution in the circumferential direction and the dynamic characteristics of falling film were studied in the falling film Reynolds number range of 356 to 715, and at a tube spacing of 5 mm and 15 mm. The falling film characteristics over metal foam layered horizontal tube were compared with that over a plain horizontal tube surface. Heat transfer studies of falling film over metal foam layered tube were studied in an evaporator of a multi-effect desalination system by experiment. It was observed that the falling film heat transfer coefficient was enhanced 2.7 times by the application of metal foam over the plain horizontal tube. The measurements obtained from hydrodynamic and heat transfer studies were compared with the predictions made by a computational model and were found to be in good agreement. Metal foam properties required for the computational model were obtained using a micro-computed tomography based study.

2020 ◽  
Vol 1008 ◽  
pp. 139-150
Author(s):  
Alaa A. Ibrahim ◽  
Hassan E.S. Fath ◽  
Mona G. Ibrahim

Falling film on horizontal tube evaporators, of both Mechanical Vapor Compression (MVC) and the Multi-Effect Distillation (MED) desalination systems, plays an important role in the heat and mass transfer (evaporation) and accordingly the systems productivity. Falling film thickness is mainly influenced by the intertube space, circumferential angle and the film’s Reynolds number. This paper presents two-dimensional numerical study of falling film thickness around horizontal tube in MVC and MED evaporators. The study is based on computational fluid dynamics (CFD) using volume of fraction (VOF) as a multi-phase technique in ANSYS Fluent. The numerical model is developed in order to study the heat and mass transfer charactristics, the liquid falling film behaviour and thickness distribution around circular horizontal. Four CFD study cases are developed to simulate the falling film behaviour at circumferential angle range from 150 to 1650 with inter-tube spacing of 10 mm, 16 mm, 33 mm and 40 mm and for constant value of flow rate and at the same surrounding conditions. Simulations are conducted using a domain of only two tubes with 20 mm outer diameter.The results from the numerical models are compared with the published experimental correlations, showing a comparatively reasonable agreement. In addition, a parametric study is carried out to illustrate the effect of flow Reyonlds number (Re) and intertube space on the average circumferential film thickness and heat transfer rates.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Janusz T. Cieśliński ◽  
Slawomir Smolen ◽  
Dorota Sawicka

The results of experimental investigation of free convection heat transfer in a rectangular container are presented. The ability of the commonly accepted correlation equations to reproduce present experimental data was tested as well. It was assumed that the examined geometry fulfils the requirement of no-interaction between heated cylinder and bounded surfaces. In order to check this assumption recently published correlation equations that jointly describe the dependence of the average Nusselt number on Rayleigh number and confinement ratios were examined. As a heat source served electrically heated horizontal tube immersed in an ambient fluid. Experiments were performed with pure ethylene glycol (EG), distilled water (W), and a mixture of EG and water at 50%/50% by volume. A set of empirical correlation equations for the prediction of Nu numbers for Rayleigh number range 3.6 × 104 < Ra < 9.2 × 105 or 3.6 × 105 < Raq < 14.8 × 106 and Pr number range 4.5 ≤ Pr ≤ 160 has been developed. The proposed correlation equations are based on two characteristic lengths, i.e., cylinder diameter and boundary layer length.


2021 ◽  
Author(s):  
Tony Avedissian

The free convective heat transfer in a double-glazed window with a between-pane Venetian blind has been studied numerically. The model geometry consists of a two-dimensional vertical cavity with a set of internal slats, centred between the glazings. Approximately 700 computational fluid dynamic solutions were conducted, including a grid sensitivity study. A wide set of geometrical and thermo-physical conditions was considered. Blind width to cavity width ratios of 0.5, 0.65, 0.8, and 0.9 were studied, along with three slat angles, 0º (fully open, +/- 45º (partially open), and 75º (closed). The blind to fluid thermal conductivity ratio was set to 15 and 4600. Cavity aspects of 20, 40, and 60, were examined over a Rayleigh number range of 10 to 10⁵, with the Prandtl number equal to 0.71. The resulting convective heat transfer data are presented in terms of average Nusselt numbers. Depending on the specific window/blind geometry, the solutions indicate that the blind can either reduce or enhance the convective heat transfer rate across the glazings. The present study does not consider radiation effects in the numerical solution. Therefore, a post-processing algorithm is presented that incorporates the convective and radiative influences, in order to determine the overall heat transfer rate across the window/blind system.


Sign in / Sign up

Export Citation Format

Share Document