A New Loss Generation Body Force Model for Fan/Compressor Blade Rows: Application to Uniform and Non-Uniform Inflow in Rotor 67

2021 ◽  
pp. 1-41
Author(s):  
Syamak Pazireh ◽  
Jeff Defoe

Abstract Despite advances in computational power, the cost of time-accurate flows in axial compressor and fan stages with spatially non-uniform inflow is still too high for design-stage use in industry. Body force modeling reduces the computation time to practical levels, mainly by reducing the problem to a steady one. These computations are important to determine efficiency penalties associated with non-uniform inflows. Previous studies of body force methods have, in most cases, relied on computations with the presence of the blades to calibrate loss models. In some recent studies, uncalibrated models have been used, but such models can drop off in accuracy at conditions where separation would occur on the blade surfaces. In this paper, a neural network-based loss model introduced in a recent paper by the authors is implemented for NASA rotor 67 for both uniform and non-uniform inflow conditions. For uniform inflow, the spanwise trend of entropy variation is generally captured with the new body force model. Although there are discrepancies at some span fractions, the present model generally predicts the compressor's isentropic efficiency to within 3% compared to bladed RANS simulations. For non-uniform inflow, we consider a stagnation pressure profile representative of boundary layer ingestion. The results show that the region of maximum entropy generation is captured by the present model and the prediction of isentropic efficiency penalty due to the non-uniform inflow is only 0.2 points less than that determined from bladed computations.

Author(s):  
Xiaohua Liu ◽  
Yanpei Zhou ◽  
Xiaofeng Sun ◽  
Dakun Sun

This paper applies a theoretical model developed recently to calculate the flow instability inception point in axial high speed compressors system. After the mean flow field is computed by steady CFD simulation, a body force approach, which is a function of flow field data and comprises of one inviscid part and the other viscid part, is taken to duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition method is adopted over a series of fine grid points in frequency domain, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The first assessment is to check the applicability of the present model on calculating the stall margin of one single stage transonic compressors at 85% rotational speed. The reasonable prediction accuracy validates that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It could possibly be employed to check over-computed stall margin during the design phase of new high speed fan/compressors. The following validation case is conducted to study the nontrivial role of tip clearance in rotating stall, and a parameter study is performed to investigate the effects of end wall body force coefficient on stall onset point calculation. It is verified that the present model could qualitatively predict the reduced stall margin by assuming a simplified body force model which represents the response of a large tip clearance on the unsteady flow field.


Author(s):  
Hanxuan Zeng ◽  
Xinqian Zheng ◽  
Mehdi Vahdati

Abstract The occurrence of stall and surge in axial compressors has a great impact on the performance and reliability of aero-engines. Accurate and efficient prediction of the key features during these events has long been the focus of engine design processes. In this paper, a new body-force model that can capture the three-dimensional and unsteady features of stall and surge in compressors at a fraction of time required for URANS computations is proposed. To predict the rotating stall characteristics, the deviation of local airflow angle from the blade surface is calculated locally during the simulation. According to this local deviation, the computational domain is divided into stalled and forward flow regions, and the body-force field is updated accordingly; to predict the surge characteristics, the local airflow direction is used to divide the computational domain into reverse flow regions and forward flow regions. A single-stage axial compressor and a three-stage axial compressor are used to verify the proposed model. The results show that the method is capable of capturing stall and surge characteristics correctly. Compared to the traditional fully three-dimensional URANS method (fRANS), the simulation time for multi-stage axial compressors is reduced by 1 to 2 orders of magnitude.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Xiaohua Liu ◽  
Yanpei Zhou ◽  
Xiaofeng Sun ◽  
Dakun Sun

This paper applies a theoretical model developed recently to calculate the flow instability inception point in axial high speed compressors system with tip clearance. After the mean flow field is computed by 3D steady computational fluid dynamics (CFD) simulation, a body force approach, which is a function of flow field data and comprises of one inviscid part and the other viscid part, is taken to duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition (SVD) method is adopted over a series of fine grid points in frequency domain, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The first assessment is to check the applicability of the present model on calculating the stall margin of one single stage transonic compressors at 85% rotational speed. The reasonable prediction accuracy validates that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It could possibly be employed to check overcomputed stall margin during the design phase of new high speed compressors. The following validation case is conducted to study the nontrivial role of tip clearance in rotating stall, and a parameter study is performed to investigate the effects of end wall body force coefficient on stall onset point calculation. It is verified that the present model could qualitatively predict the reduced stall margin by assuming a simplified body force model which represents the response of a large tip clearance on the unsteady flow field.


Author(s):  
Jin Guo ◽  
Jun Hu

The aim of this article is to develop a three-dimensional computational model to simulate the traveling process of inlet distortion in fan and compressor with low calculated costs. The model is established based on the body force model in the framework of modern Computational Fluid Dynamics technology. The flow is assumed to be axisymmetric in each meridional blade passage. The impact of the solid blade shapes on airflow is modeled with blade blockage factor and blade body force. The relationships between blade body force and blade inlet Mach number together with attack angle are established with the deviation angle model and loss model. Meanwhile, the effect of the turbulent mixing is also taken into consideration. This developed computational code is then applied to the investigation of a transonic fan rotor and of a four-stage low-speed axial compressor under clean and distorted inlet condition. The predicted performance of both the fan rotor and the four-stage compressor with clean inlet are in line with the experimental results. A quantitative comparison is made between the computational results and the measurement data of the fan rotor with inlet distortion. Additionally, the transfer behavior of inlet distortion in the four-stage compressor is simulated by the model. All results demonstrate the effectiveness and practicability of the model.


Author(s):  
ZX Liu ◽  
HZ Diao ◽  
XC Zhu ◽  
ZH Du

In this paper, a three-dimensional body force model for predicting compressor performance and stability is implemented in the Ansys CFX. The influence of the blade rows on the flow field is represented by the source terms of CFX-solver equation. At first, a high-speed and high-pressure-ratio transonic compressor with the clean inlet is investigated. The overall performance and the flow fields are in agreement well with those of the experimental date, so the model is reliable and correct. Then, the effects of the circumferential distortions in the inlet total pressure and the total temperature on the compressor performance and flow field are also illustrated, respectively. In summary, the proposed body force model is suitable to investigate the flow field of the compressor with the inlet distortions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jin Guo ◽  
Jun Hu ◽  
Baofeng Tu

AbstractThis paper applies a body force model developed recently to investigate the interaction between total temperature distortion and a multistage fan. The off-design performance of the fan shows the reasonable predicting accuracy and supports the present model is applicable for high-speed multistage machines. The transfer behaviors of 90° steady-state circumferential total temperature distortion as well as combined total pressure and total temperature distortion in the multistage environment are captured successfully by the model. The mechanism of the phase shift of the high temperature sector is discussed by the model to advance the understanding of the total temperature distortion problem. The results reveal that the large-scale flow feature of total temperature distortion in the multistage environment can be capably quantified by the present body force model with the acceptable computational consumption.


2021 ◽  
Vol 33 (3) ◽  
pp. 037115
Author(s):  
Di Chen ◽  
Kengo Asada ◽  
Satoshi Sekimoto ◽  
Kozo Fujii ◽  
Hiroyuki Nishida

Author(s):  
R. V. Chima

In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1. The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2. The body force model was used to simulate large partspan splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3. The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.


1986 ◽  
Vol 57 (8) ◽  
pp. 559-562 ◽  
Author(s):  
H. Nait-Laziz ◽  
K.K. Chopra

Author(s):  
Ashwani Pratap ◽  
Karali Patra

Abstract This work presents an analytical cutting force modeling for micro-slot grinding. Contribution of the work lies in the consideration of both primary and secondary tool surface interactions with the work surface as compared to the previous works where only primary tool surface interaction was considered during cutting force modeling. Tool secondary surface interaction with workpiece is divided into two parts: cutting/ ploughing by abrasive grits present in exterior margin of the secondary tool surface and sliding/adhesion by abrasive grits in the inner margins of the secondary tool surface. Orthogonal cutting force model and indentation based fracture model is considered for cutting by both the abrasives of primary tool surface and the abrasives of exterior margin on the secondary surface. Asperity level sliding and adhesion model is adopted to solve the interaction between the workpiece and the interior margin abrasives of secondary tool surface. Experimental measurement of polycrystalline diamond tool surface topography is carried out and surface data is processed with image processing tools to determine the tool surface statistics viz., cutting edge density, grit height distribution and abrasive grit geometrical measures. Micro-slot grinding experiments are carried out on BK7 glass at varying feed rate and axial depths of cut to validate the simulated cutting forces. Simulated cutting forces considering both primary and secondary tool surface interactions are found to be much closer to the experimental cutting forces as compared to the simulated cutting forces considering only primary tool surface interaction.


Sign in / Sign up

Export Citation Format

Share Document