Feasibility Study of long term Dual Tank PV/T Indirect Parallel Solar Assisted Heat Pump systems

2021 ◽  
pp. 1-31
Author(s):  
Taoufik Brahim ◽  
Jemni Abdelmajid

Abstract A novel dual tank PV/T indirect parallel solar assisted heat pump system (DTPV/T-ISAHP) was investigated in this paper, which filled a gap in the literature. Furthermore, a long-term performance study analysis was performed under Tunisian climate to offset domestic electric and hot water loads. Optimal operations of such a system are achieved based on a simplified mathematical model. Results showed that the average thermal and electric energy efficiency is about 39.65% and 11.38%, respectively. Results revealed that the increase in solar radiation results in an improvement of the system's thermal-based COP efficiency coefficient reaching 4.49 at 893 W/m2. PV/T average electrical energy output is found to 0.68 kWh/m2/day with an annual average of 177.42 kWh/m2, which leads to an annual electricity surplus of about 5.83%. A reversible heat pump operation seemed more advantageous especially in the summer months, reducing yearly electric demand by about 84.57%. An economic analysis is undertaken and a payback period of about 12.7 years is found. The current study provided a framework for assessing such a system's behavior and providing useful flexibility to achieve the best possible system performance.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ching-Song Jwo ◽  
Zi-Jie Chien ◽  
Yen-Lin Chen ◽  
Chao-Chun Chien

The requirements of providing electric energy through the wind-forced generator to the heat pump for water cooling and hot water heating grow significantly by now. This study proposes a new technique to directly adopt the wind force to drive heat pump systems, which can effectively reduce the energy conversion losses during the processes of wind force energy converting to electric energy and electric energy converting to kinetic energy. The operation of heat pump system transfers between chiller and heat that are controlled by a four-way valve. The theoretical efficiency of the traditional method, whose heat pump is directly forced by wind, is 42.19%. The experimental results indicated average value for cool water producing efficiency of 54.38% in the outdoor temperature of 35°C and the indoor temperature of 25°C and the hot water producing efficiency of 52.25% in the outdoor temperature and the indoor temperature both of 10°C. We proposed a method which can improve the efficiency over 10% in both cooling and heating.


Author(s):  
Ahmad Riaz ◽  
Chao Zhou ◽  
Ruobing Liang ◽  
Jili Zhang

Photovoltaic thermal systems have gained tremendous popularity in the production of electric and thermal energy. In this paper, the photovoltaic thermal modules for the building façade assisted by heat pump system is proposed which combines the photovoltaic modules with an evaporator part of the heat pump system to produce hot water and electrical energy. Also, the photovoltaic thermal panels are used to preheat the cold ambient fresh air without heat pump operation. The proposed system was constructed at the Institute of Building Energy, Dalian University of Technology, China to study the ambient fresh air heating characteristic, electrical power generation, and hot water generation through performance evaluation indices under natural weather conditions. It was found that the average electrical, thermal, and overall efficiencies are 8.8%, 26%, and 50%, respectively during the pre-heating of fresh air. While the average air temperature is 15.2°C inside an air gap. The average COP for water heating is 3.91 during the water heating mode. This study could be used as a guide for photovoltaic thermal solar-assisted heat pump systems on building envelopes in a multi-energy generation under different weather conditions. Practical application: The study considers the photovoltaic thermal modules for building façade not only to generate the electrical energy and pre-heated fresh air but also to generate the hot water when assisted with the heat pump system. This research could assist researchers and engineers in the field of photovoltaic thermal façade systems in multi-energy generation such as for the production of electricity, heated/cooled fresh air, and hot water generation.


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


2017 ◽  
Vol 115 ◽  
pp. 393-405 ◽  
Author(s):  
Fang Liu ◽  
Weiquan Zhu ◽  
Yang Cai ◽  
Eckhard A. Groll ◽  
Jianxing Ren ◽  
...  

2021 ◽  
Author(s):  
Toktam Saeid

In October 2009, Team North competed in the US DOE 2009 Solar Decathlon competition. Team North's mission was to design and deliver North House, an energy efficient solar-powered home while training Canada's next generation of leaders in sustainable design. In North House, the PV system on the roof was the primary energy generation, complimented by a custom PV cladding system on the south, east and west facades. A solar assisted heat pump system, including a three-tank heat transfer and storage system, the horizontally mounted evacuated-tube solar thermal collectors on the roof and a variable capacity heat pump met the hot water and space heating demands. A second variable capacity heat pump was utilized for space cooling. The solar thermal system was studied using TRNSYS simulation. For the initial assessments the simulations were run for Baltimore. Then, the analyses were extended to different cities across Canada. In all scenarios the same house was linked to the system. The minimum annual solar fraction of the different cities was 64% and it rose up to 81%. Finally, the data measured during the competition were analyzed and compared with the data resulting from the simulation. According to competition measures, during the 10 days of competition in Washington DC, the PV system generated 271.6kWh of electricity and the solar thermal system produced 91.7kWh while the house consumption was 294.1kWh. As a result, North House was evidently a net-positive house.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


Author(s):  
Lanbin Liu ◽  
Lin Fu ◽  
Yi Jiang

Typically there is a great deal of waste heat available in drainage system of large-scale public bathhouses, such as public bathhouses in schools, barracks and natatoriums. The paper advances a heat pump system used in bathhouses for exhaust heat recovery. The system consists of solar energy collection system, drainage collection system and heat pump system for exhaust heat recovery. In the system, tap water is heated by energy from solar energy collection system, and is used as hot water for bathing at the beginning. At the same time, drainage collection system collects sewage from bathhouses, and then electric heat pump starts up and recovers the exhaust heat in sewage and heats the tap water. In this way, heat is recycled. Practical operation of the system was introduced, and drainage temperature as well as equipment capacity was optimized based on a practical example. Compared with gas-fired (oil-fired, coal-fired, electric) boilers, the system has advantages of lower energy consumption, less pollution and lower operating cost. Therefore, the system has great superiority in energy conservation and has a good application prospect.


Sign in / Sign up

Export Citation Format

Share Document