An in-depth Experimental Investigation of the Outdoor Performance of Wafer and Thin Film PV Technologies in a Tropical Climate

2022 ◽  
pp. 1-19
Author(s):  
Yatindra Kumar Ramgolam ◽  
Heman Shamachurn ◽  
Jonathan Yannick Coret

Abstract The photovoltaics (PV) industry is booming at an impressive rate. Knowledge of the outdoor perfor-mance of different PV technologies under different climatic conditions is becoming increasingly im-portant for all stakeholders. The aim of this research was to perform the outdoor characterisation of three PV technologies in a tropical climate and evaluate their performances with the aid of a set of key performance indicators. An innovative energy autonomous outdoor test facility has been used to measure the weather conditions and the IV curves of mono-Si, poly-Si and CIGS PV modules. Each IV curve was sampled within less than a second, for every 10 minutes, between sunrise and sunset for a whole year, representing a data set of around 28,000 IV curves of 240 points each. The variations of current, voltage and power were thoroughly studied for changes in temperature and irradiance. This paper reports the variations of temperature coefficients of current, voltage and power with the inten-sity of light. While PV module documentation only present the temperature coefficients of the short circuit current and open circuit voltage at Standard Test Conditions, this paper additionally provides highly valuable information to PV system designers on the variation of these coefficients in the field. The research is also the first to report the variations of the fill factor with temperature and irradi-ance. In general, the wafer technologies were found to have a better performance than the thin film technology. Moreover, the open-circuit temperature coefficient was found to improve for higher irra-diances only for the wafer technologies, while that for the thin-film technology experienced a degrada-tion. The temperature coefficient of current for the mono-Si module was found to be positive at low irradiance levels, but negative at higher irradiance levels.

2021 ◽  
Vol 5 (3) ◽  
pp. 242-250
Author(s):  
D. Sergeyev ◽  
K. Shunkeyev ◽  
B. Kuatov ◽  
N. Zhanturina

In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550017 ◽  
Author(s):  
A. Gentile ◽  
G. Cacciato ◽  
F. Ruffino ◽  
R. Reitano ◽  
G. Scapellato ◽  
...  

We report about the modulation of the electrical properties of thin film solar cells due to the incorporation of size-selected Au nanostructures (NSs) at a textured FTO/p–i–n interface. By increasing the Au NSs size, the analyses of current-voltage characteristics show lower Schottky barrier heights and the gradual reduction of the open-circuit voltages (V OC ). The optical measurements show higher parasitic absorption by larger Au NSs that reduces the amount of radiation transmitted by the transparent to absorber layer. This process decreases the number of photo-generated carriers and may explain the V OC reduction related to the devices with larger Au NSs at the interface. So, the correlation between materials properties and device performances was established.


2001 ◽  
Vol 668 ◽  
Author(s):  
S. W. Townsend ◽  
T. R. Ohno ◽  
V. Kaydanov ◽  
A. S. Gilmore ◽  
J. D. Beach ◽  
...  

ABSTRACTCadmium Sulfide/Cadmium Telluride (CdS/CdTe) devices are subject to stress under various biases. Striking differences are observed with the Current-Voltage, and Capacitance- Voltage measurements for cells degraded at 100°C in dark under forward (FB), open circuit (OC), and reverse (RB) biases. RB stress provides the greatest degradation, and the apparent doping density profile shows anomalous behavior at the zero bias depletion width. Thin films of CdS, both doped and undoped, with Cu are characterized with photoluminescence (PL). The PL spectra from the CdS films are correlated with the CdS spectra from stressed devices, revealing that Cu signatures in the CdS layer of stressed devices are a function of stress biasing. Device modeling using AMPS-1D produces IV curves similar to that in RB degraded devices, by only varying the trap level concentration in the CdS layer.


1977 ◽  
Vol 4 (3-4) ◽  
pp. 139-142 ◽  
Author(s):  
H. W. Pötzlberger

Thin film integrated RC-networks can be prepared from two non reactively sputtered TaAl films, the properties and optimum compositions of which have been found. Temperature compensation of the integrated resistors and capacitors is achieved by adjusting the temperature coefficient of capacitance. A duplex dielectric capacitor structure is used with anodically formed TaAl-oxide and a sputtered SiO2layer. Temperature coefficient of capacitance, dielectric loss and capacitance density have been measured vs. SiO2thickness. Because of almost linear dependences on temperature of both the TaAl resistors and the TaAl-oxide/SiO2-capacitors, such RC-networks show temperature compensation over a wide temperature range, the TCC being +110 ppm/K and the TCR −110 ppm/K.


2002 ◽  
Vol 725 ◽  
Author(s):  
S.B. Phelan ◽  
B.S. O'Connell ◽  
G. Farrell ◽  
G. Chambers ◽  
H.J. Byrne

AbstractThe current voltage characteristics of C60 thin film sandwich structures fabricated by vacuum deposition on indium tin oxide (ITO) with an aluminium top electrode are presented and discussed. A strongly non-linear behavior and a sharp increase in the device conductivity was observed at relatively low voltages (∼2V), at both room and low temperatures (20K). At room temperature the system is seen to collapse, and in situ Raman measurements indicate a solid state reduction of the fullerene thin film to form a polymeric state. The high conductivity state was seen to be stable at elevated voltages and low temperatures. This state is seen to be reversible with the application of high voltages. At these high voltages the C60 film was seen to sporadically emit white light at randomly localized points analogous to the much documented Electroluminescence in single crystals.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hashem Shahroosvand ◽  
Parisa Abbasi ◽  
Mohsen Ameri ◽  
Mohammad Reza Riahi Dehkordi

The metal complexes ( (phen)2(phendione))(PF6)2(1), [ (phen)(bpy)(phendione))(PF6)2(2), and ( (bpy)2(phendione))(PF6)2(3) (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine and phendione = 1,10-phenanthroline-5,6-dione) have been synthesized as photo sensitizers for ZnO semiconductor in solar cells. FT-IR and absorption spectra showed the favorable interfacial binding between the dye-molecules and ZnO surface. The surface analysis and size of adsorbed dye on nanostructure ZnO were further examined with AFM and SEM. The AFM images clearly show both, the outgrowth of the complexes which are adsorbed on ZnO thin film and the depression of ZnO thin film. We have studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phendione complexes, which gave power conversion efficiency of (η) of 1.54% under the standard AM 1.5 irradiation (100 mW cm−2) with a short-circuit photocurrent density () of 3.42 mA cm−2, an open-circuit photovoltage () of 0.622 V, and a fill factor (ff) of 0.72. Monochromatic incident photon to current conversion efficiency was 38% at 485 nm.


Sign in / Sign up

Export Citation Format

Share Document