Numerical Investigation for Performance Enhancement of Photovoltaic Cell by Nanofluid Cooling

2022 ◽  
pp. 1-32
Author(s):  
Hassan Salem ◽  
Ehab Mina ◽  
Raouf Abdelmessih ◽  
Tarek Mekhail

Abstract The cooling fluid is a key factor in cooling photovoltaic (PV) panels especially in the case of concentrated irradiance. Maintaining the panel at low temperature increases its efficiency. This paper investigates the usage of water-Al2O3 as a nanofluid for achieving the required cooling process. The particle concentrations and sizes are investigated to record their effect on heat transfer and pressure drop in the developing and developed regions. The research was performed using ANSYS CFD software with two different approaches: the single phase with average properties, and the discrete phase with the Eulerian-Lagrangian frame-work. Both approaches are compared to experimental results found in the literature. Both approaches show good agreement with the experimental results, with some advantage for the single-phase model both in processing time and in predicting heat transfer in the concentration range of 1-6% by volume. It was shown that, the heat transfer coefficient is greatly enhanced by increasing the particle concentration or decreasing the particle size. On the other hand, the usage of nanofluid causes a severe increase in the pumping power, especially with the increase in concentration and the reduction in particle size. Thus, a system optimization was suggested in order to raise the overall system efficiency for photovoltaic applications.

Author(s):  
Ki Wook Jung ◽  
Hyoungsoon Lee ◽  
Chirag Kharangate ◽  
Feng Zhou ◽  
Mehdi Asheghi ◽  
...  

Abstract High performance and economically viable thermal cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in 2D-plane. Utilizing direct “embedded cooling” strategy in combination with top access 3D-manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. Here, we present the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold-plate bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 52 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with 4 micro-conduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by Infra-red (IR) camera and electrical resistance thermometry. The experimental results for maximum and average temperatures of the chip, pressure drop, thermal resistance, average heat transfer coefficient for flow rates of 0.1, 0.2. 0.3 and 0.37 lit/min and heat fluxes from 25 to 300 W/cm2 are reported. The proposed Embedded Microchannels-3D Manifold Cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature and pressures are 0.37 lit/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes < 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the micro-cooler.


Author(s):  
Pawan K. Singh ◽  
P. V. Harikrishna ◽  
T. Sundararajan ◽  
Sarit K. Das

The current study investigates the flow of nanofluids in microchannels experimentally and numerically. For this purpose, two microchannels of hydraulic diameters of 211 and 300 μm are used with alumina(45nm)-water nanofluids. The nanofluids with the concentrations 0.25, 0.50 and 1 vol% are used to observe the effect of volume fraction in the present analysis. With regard to the numerical simulation of nanofluids in microchannels, two approaches have been chosen in the current work. First one considers the nanofluids as single phase fluid and applies the mixture rule for evaluating properties for the simulation. The second type of modeling is done using the discrete phase approach which involves Eulerian-Lagrangian considerations. The fluid phase is assumed to be continuous and governed by Navier-Stokes equation. The movement of discrete nanoparticles is determined by the Newton’s second law which takes into account the body force, hydrodynamic forces, the Brownian and thermophoresis forces. The predictions are validated against experimental results obtained for nanofluid flow in a chemically etched silicon wafer channel. It is found that the discrete phase modeling is more accurate with regard to the prediction of nanofluids behavior in microchannels, as compared to the single phase model. The results also show the non-uniformity of nanoparticle distribution across the channel cross-section. This non-uniformity in distribution can be attributed to the shear induced particle migration. This can also be the reason for the difference in pressure drop and heat transfer from the single phase model. The pressure drop with 0.25 and 0.5 vol% of alumina is more or less same as that of water and thus, makes it a suitable cooling liquid. However, an enhancement in heat transfer is observed from the computational predictions.


Author(s):  
Hamidreza Rastan ◽  
Amir Abdi ◽  
Monika Ignatowicz ◽  
Bejan Hamawandi ◽  
Poh Seng Lee ◽  
...  

Abstract This study investigates the thermal performance of laminar single-phase flow in an additively manufactured minichannel heat exchanger both experimentally and numerically. Distilled water was employed as the working fluid, and the minichannel heat exchanger was made from aluminum alloy (AlSi10Mg) through direct metal laser sintering (DMLS). The minichannel was designed with a hydraulic diameter of 2.86 mm. The Reynolds number ranged from 175 to 1360, and the heat exchanger was tested under two different heat fluxes of 1.5 kWm−2 and 3 kWm−2. A detailed experiment was conducted to obtain the thermal properties of AlSi10Mg. Furthermore, the heat transfer characteristics of the minichannel heat exchanger was analyzed numerically by solving a three-dimensional conjugate heat transfer using the COMSOL Multiphysics® to verify the experimental results. The experimental results were also compared to widely accepted correlations in literature. It is found that 95% and 79% of the experimental data are within ±10% range of both the simulation results and the values from the existing correlations, respectively. Hence, the good agreement found between the experimental and simulation results highlights the possibility of the DMLS technique as a promising method for manufacturing future multiport minichannel heat exchangers.


2011 ◽  
Vol 48 (4) ◽  
pp. 532-542 ◽  
Author(s):  
Marie-Hélène Fillion ◽  
Jean Côté ◽  
Jean-Marie Konrad

This paper presents an experimental study on thermal radiation and the thermal conductivity of rock-fill materials using a 1 m × 1 m × 1 m heat transfer cell. Testing temperatures are applied by temperature-controlled fluid circulation at the top and bottom of the sample. Heat flux and temperature profiles are measured to establish the effective thermal conductivity λe, which includes contributions from both conduction and radiation heat transfer mechanisms. The materials studied had an equivalent particle size (d10) ranging from 90 to 100 mm and porosity (n) ranging from 0.37 to 0.41. The experimental results showed that thermal radiation greatly affects the effective thermal conductivity of materials with λe values ranging from 0.71 to 1.02 W·m−1·K−1, compared with a typical value of 0.36 W·m−1·K−1 for conduction alone. As expected, the effective thermal conductivity increased with particle size. An effective thermal conductivity model has been proposed, and predictions have been successfully compared with the experimental results. Radiation heat transfer becomes significant for d10 higher than 10 mm and predominant at values higher than 90 mm. The results of the study also suggest that the cooling potential of convection embankments used to preserve permafrost conditions may not be as efficient as expected because of ignored radiation effects.


Sign in / Sign up

Export Citation Format

Share Document