scholarly journals The Performance of a Centrifugal Compressor With High Inlet Prewhirl

Author(s):  
A. Whitfield ◽  
A. H. Abdullah

The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to progressively increase the swirl or to switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor the onset of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40%.

1998 ◽  
Vol 120 (3) ◽  
pp. 487-493 ◽  
Author(s):  
A. Whitfield ◽  
A. H. Abdullah

The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or to switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40 percent.


Author(s):  
Ziliang Li ◽  
Xingen Lu ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
...  

Centrifugal compressors often suffer relatively low efficiency and a terrible operating range particularly due to the complex flow structure and intense impeller/diffuser interaction. Numerous studies have focused on improving the centrifugal compressor performance using many innovative ideas, such as the tandem impeller, which has become increasingly attractive due to its ability to achieve the flow control with no additional air supply configurations and control costs in compressor. However, few studies that attempted to the investigation of tandem impeller have been published until now and the results are always contradictory. To explore the potential of the tandem impeller to enhance the compressor performance and the underlying mechanism of the flow phenomena in the tandem impellers, this paper numerically investigated a high-pressure-ratio centrifugal compressor with several tandem impellers at off-design operating speeds. The results encouragingly demonstrate that the tandem impeller can achieve a performance enhancement over a wide range of operating conditions. Approximately 1.8% maximum enhancement in isentropic efficiency and 5.0% maximum enhancement in operating range are achieved with the inducer/exducer circumferential displacement of [Formula: see text] = 25% and 50%, respectively. The observed stage performance gain of the tandem impellers decreases when the operating speed increases due to the increased inducer shock, increased wake losses, and deteriorated tandem impeller discharge flow uniformity. In addition, the tandem impeller can extend the impeller operating range particularly at low rotation speeds, which is found to be a result from the suppression of the low-momentum fluid radial movement. The results also indicate that the maximum flux capacity of the tandem impeller decreases due to the restriction of the inducer airfoil Kutta–Joukowsky condition.


Author(s):  
A. Whitfield ◽  
F. J. Wallace ◽  
R. C. Atkey

Two variable geometry techniques have been applied to a small turbocharger compressor, with the objective of trying to move the peak pressure ratio operating point to lower flow rates, thereby yielding a broad flow range map. Variable prewhirl guide vanes and variable vaneless diffuser passage height have been studied separately. The results obtained with both techniques are compared and the relative merits and demerits with respect to improved flow range and isentropic efficiency penalties are considered.


Author(s):  
Mingyang Yang ◽  
Ricardo Martinez-Botas ◽  
Yangjun Zhang

The operating range of a centrifugal compressor, determined by surge and choke flow rate, is a key issue for turbocharging since a vehicle internal combustion engine (ICE) is usually operated across a wide range. In this paper a new flow control method is developed and validated numerically, in which an array of circumferentially distributed holes is designed in the inner wall of the inlet duct of a high pressure ratio centrifugal compressor of a turbocharger. Firstly the numerical method is validated by experimental results of the original turbocharging centrifugal compressor with a pressure ratio of 4. Next the validated method is used to investigate the new flow control method and its effect on the compressor’s performance. Results show that the method can enhance the compressor stability and widen the operating range effectively at all investigated speeds. At meantime, the choke flow reduces slightly. The flow details in the compressor are further analysed according to the CFD results. It is found that the flow near the blade tip at inlet is pre-swirled by the method as the conventional IGV does while the flow in the middle span or near the hub remains in an axial direction. As a result, the stability of the compressor is enhanced by the pre-swirl effect at the tip while minimally sacrificing the choke flow rate, thus the map is extended effectively by the flow control method.


Author(s):  
Hideomi Harada

In order to improve the operating range of a centrifugal compressor, computer-controlled variable inlet and diffuser vanes were attached to a compressor with a pressure ratio of 2.5. Low-solidity cascade vanes capable of controlling the vane angle up to 0 degrees from the tangential direction were used for the vaned diffuser. The compressor’s overall performance was then tested using a closed-loop test stand. By automatically adjusting the diffuser vanes to the most suitable flow angle, pressure fluctuations caused by the unstable flow in the diffuser during low-flow operation of the centrifugal compressor could be suppressed, and the compressor could be operated nearly up to the shut-off flow rate without any surge. The author experimentally confirmed the critical operating range of both the impeller and diffuser at two different tip speeds and five inlet guide vane angles. Furthermore, a three-dimensional viscous flow-analysis method was applied to the impeller, and a three-dimensional momentum integral analysis method was applied to the diffuser. Then the critical operating ranges obtained in the experiments were qualitatively validated. The operating range of a centrifugal compressor under low-flow conditions, which has until now been limited because of surge, dramatically improved in this study, thereby demonstrating that it may be possible to develop a surge-free centrifugal compressor.


Author(s):  
ChiYong Park ◽  
YoungSeok Choi ◽  
KyoungYong Lee ◽  
JoonYong Yoon

This paper presents a numerical study of casing treatments on a centrifugal compressor in order to improve stability and the surge margin. High efficiency, a high pressure ratio, and a wide operating range are required for a high-performance centrifugal compressor. A ring groove casing treatment is effective for flow range enhancement in centrifugal compressors. In the present study, compressor performance was analyzed according to the ring groove location and the results were compared with the case without a ring groove. The effect of guide vanes in the ring groove was also investigated. Four more variants of grooves were modeled and simulated using computational fluid dynamics (CFD) in order to optimize the groove location. The numerical analysis was carried out using a commercial code ANSYS-CFX program. The simulation results showed that the ring groove increased the operating range of the compressor. The ring groove with guide vanes improved both the compressor’s performance at low flow rates and improved the compressor’s surge margin.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2711 ◽  
Author(s):  
Nima Khoshkalam ◽  
Mohammad Mojaddam ◽  
Keith R. Pullen

The performance of an automotive turbocharger centrifugal compressor has been studied by developing a comprehensive one-dimensional (1D) code as verified through experimental results and a three-dimensional (3D) model. For 1D analysis, the fluid stream in compressor is modeled using governing gas dynamics equations and the loss mechanisms have been investigated and added to the numerical model. The objective is to develop and offer a 1D model, which considers all loss mechanisms, slip, blockage and also predicts the surge margin and choke conditions. The model captures all features from inlet duct through to volute discharge. Performance characteristics are obtained using preliminary geometry and the blade characteristics. A 3D numerical model was also created and a viscous solver used for investigating the compressor characteristics. The numerical model results show good agreement with experimental data through compressor pressure ratio and efficiency. The effect of the main compressor dimensions on compressor performance has been investigated for wide operating range and the portions of each loss mechanism in the impeller. Higher pressure ratio is achievable by increasing impeller blade height at outlet, impeller blade angle on inlet, diffuser outlet diameter and by decreasing impeller shroud diameter at inlet and blade angle at outlet. These changes may cause unfavorable consequences such as a lower surge margin or shorter operating range, which should be compromised with favorable changes. At lower rotational speeds, impeller skin friction mainly impacts the performance and at higher rotational speeds, impeller diffusion, blade loading and recirculation losses are more important. The results allow the share of each loss mechanism to be quantified for different mass flow rates and rotational speed, shedding new light on which losses are most important for which conditions. For a turbocharger, which must operate over a wide range of conditions, these results bring new insight to engineers seeking to optimize the compressor design as part of an internal combustion engine system.


Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


2021 ◽  
Author(s):  
Gang Fan ◽  
Kang Chen ◽  
Shaoxiong Zheng ◽  
Yang Du ◽  
Yiping Dai ◽  
...  

Abstract The supercritical carbon dioxide (SCO2) Brayton cycle is one of the most promising power cycles due to its high efficiency, compactness and environmentally friendliness. The centrifugal compressor is a key component of small and medium SCO2 Brayton cycles, and its efficiency has a significant impact on the cycle efficiency. Since the required electric load of power cycles always fluctuates over the year, the SCO2 compressor will operate away from its design point and the narrow stable operating range of a compressor is always a restriction. In this paper, the variable-geometry method, which refers to the combination of a variable inlet-guide-vanes and variable diffuser vanes is proposed for the operating range extension of SCO2 compressors. A set of one-dimensional (1D) loss correlations has been found to accurately predict various losses of the SCO2 compressor components. Based on the 1D thermodynamic model, two programs with internal MATLAB codes coupled with the NIST REFPROP database have been developed for preliminary optimization design and off-design performance predictions of the variable geometry SCO2 compressor. The contributions from the variable-inlet prewhirl and variable diffuser vanes to the shifts of the surge line and choke line are discussed in this paper. The results show the variable-geometry SCO2 compressor has a superior performance at off-design conditions and a wider operating range.


2021 ◽  
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Matteo Manganelli ◽  
Mirko Morini ◽  
...  

Abstract The operability region of a centrifugal compressor is bounded by the low-flow (or high-pressure ratio) limit, commonly referred to as surge. The exact location of the surge line on the map can vary depending on the operating condition and, as a result, a typical Surge Avoidance Line is established at 10% to 15% above the stated flow for the theoretical surge line. The current state of the art of centrifugal compressor surge control is to utilize a global recycle valve to return flow from the discharge side of a centrifugal compressor to the suction side to increase the flow through the compressor and, thus, avoid entering the surge region. This is conventionally handled by defining a compressor surge control line that conservatively assumes that all stages must be kept out of surge at all the time. In compressors with multiple stages, the amount of energy loss is disproportion-ally large since the energy that was added in each stage is lost during system level (or global) recycling. This work proposes an internal stage-wise recycling that provides a much more controlled flow recycling to affect only those stages that may be on the verge of surge. The amount of flow needed for such a scheme will be much smaller than highly conservative global recycling approach. Also, the flow does not leave the compressor casing and therefore does not cross the pressure boundary. Compared to global recycling this inherently has less loss depending upon application and specific of control design.


Sign in / Sign up

Export Citation Format

Share Document