Anomalous Decrease in Flow Rates of Micro-Orifice Flows of Water With Increasing the Elapsed Time After Inception of the Flow

Author(s):  
Tomiichi Hasegawa ◽  
Akiomi Ushida ◽  
Hiroshige Uchiyama ◽  
Takatsne Narumi

Flow rates under some pressure differentials were measured for the flow of water through micro-orifices. It was found that the flow rate decreases as the time has elapsed after inception of the flow under a constant pressure differential and that the decrease in flow rates is larger for city water than for pure water, and the gold orifice provides a less decrease with time in flow rates than the nickel orifice, although the flow rate at the incipient stage of the experimental run is lower in the gold orifice than in the nickel orifice.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1426
Author(s):  
Ola Svahn ◽  
Erland Björklund

By using an innovative, positive pressure sample loading technique in combination with an in-line filter of finely ground sand the bottleneck of solid phase extraction (SPE) can be reduced. Recently published work by us has shown the proof of concept of the technique. In this work, emphasis is put on the SPE flow rate and method validation for 26 compounds of emerging environmental concern, mainly from the 1st and 2nd EU Watch List, with various physicochemical properties. The mean absolute recoveries in % and relative standard deviations (RSD) in % for the investigated compounds from spiked pure water samples at the three investigated flow rates of 10, 20, and 40 mL/min were 63.2% (3.2%), 66.9% (3.3%), and 69.0% (4.0%), respectively. All three flow rates produced highly repeatable results, and this allowed a flow rate increase of up to 40 mL/min for a 200 mg, 6 mL, reversed phase SPE cartridge without compromising the recoveries. This figure is more than four times the maximum flow rate recommended by manufacturers. It was indicated that some compounds, especially pronounced for the investigated macrolide molecules, might suffer when long contact times with the sample glass bottle occurs. A reduced contact time somewhat decreases this complication. A very good repeatability also held true for experiments on both spiked matrix-rich pond water (high and low concentrations) and recipient waters (river and wastewater) applying 40 mL/min. This work has shown that, for a large number of compounds of widely differing physicochemical properties, there is a generous flow rate window from 10 to 40 mL/min where sample loading can be conducted. A sample volume of 0.5 L, which at the recommended maximum flow rate speed of 10 mL/min, would previously take 50 min, can now be processed in 12 min using a flow rate of 40 mL/min. This saves 38 min per processed sample. This low-cost technology allows the sample to be transferred to the SPE-column, closer to the sample location and by the person taking the sample. This further means that only the sample cartridge would need to be sent to the laboratory, instead of the whole water sample, like today’s procedure.


Author(s):  
Muinul H. Banna ◽  
Homayoun Najjaran ◽  
Rehan Sadiq ◽  
Manuel J. Rodriguez ◽  
Syed A. Imran ◽  
...  

The miniaturised online sensors that were developed in the laboratories were for atmospheric pressure and steady state flow, but in the water distribution network neither the pressure nor the flow is steady. Many of the state of the art drinking water quality monitoring sensors can be operated well below the drinking Water Distribution System (WDS) pressure. Moreover, each of the sensors requires different flow rates. This paper discusses simulation and design of an affordable constant flow and constant outlet pressure system and shows an easy way to provide different flow rates for different sensors. The other criterion which should be met is the flow rate of the water bled (leakage) from WDS which must also be low. To meet the above criteria a 2-D model was developed to represent the constant pressure constant flow system for online water quality monitoring (WQM) sensors. Different configuration of the system is considered and the optimum design includes 1.044 m/s flow velocity which is low enough for the flow to be steady.


1982 ◽  
Vol 104 (2) ◽  
pp. 248-254 ◽  
Author(s):  
J. R. Missimer ◽  
W. S. Johnson

The radial outflow between a grooved rotating disk and a smooth stationary disk was examined analytically and experimentally with an emphasis on flow rate and drag moment. All investigations were conducted for a zero overall pressure differential across the disk. The analysis was based on an integral method with an area-averaged boundary condition on the grooved rotor. Nondimensionalization of the governing equations revealed that the radial inertia terms cannot in general be neglected. With the exception of the centrifugal acceleration terms, the radial inertia terms are usually neglected in this type of analysis. However, for higher flow rates these terms were found to make a significant contribution. A finite difference scheme was employed in the radial direction and a zero pressure differential across the disk was satisfied by an iterative solution technique. This technique required iteration on both the inlet flow rate to the gap and groove region until compatible flow rates in these two regions were obtained through convergence. The analytical predictions for the smooth rotor, a radially grooved rotor, and a rotor with grooves inclined at ± 20 degree to the radius are compared with experimental data generated using both air and 10 wt. motor oil as test fluids. The agreement between theory and experiment is generally good. A transition regime from laminar to turbulent flow is tentatively identified and plausibility arguments are presented to explain its existence.


2017 ◽  
Vol 24 (3) ◽  
pp. 163-169
Author(s):  
Ellen L Cusano ◽  
Raafi Ali ◽  
Michael B Sawyer ◽  
Carole R Chambers ◽  
Patricia A Tang

Purpose Elastomeric pumps are used to administer 46-hour infusions of 5-fluorouracil (5FU). Baxter suggests patients visually monitor their pumps to ensure that infusions are proceeding correctly. This can be confusing and lead to concerns about under- or over-dosing. Baxter has not considered weighing pumps as a validated method for monitoring. This study aims to validate weighing as a more accurate method for patients and healthcare professionals, and describe real life Baxter Infusor™ variability. Methods Patients who had been started on a 46-hour 5FU infusion returned to the clinic approximately 24 h after starting treatment. The pump was weighed on a StarFrit kitchen scale, and date, time, and weights recorded. Patients were asked if they had a preference for weighing or visually inspecting their pump. Results Pumps ( n = 103) were weighed between 17.25 and 27.5 h after connection. The average weight of a pump was 189 g. Of 103 pumps weighed, 99 weighed less than expected, corresponding to average flow rates of 5.69 mL/h over the elapsed time. The expected flow rate is 5 mL/h with 10% variability. Average flow rates within the 17.25- to 27.5-hour window were 4.561 mL/h, which is 8.78% slower than expected, but within the 10% known variability. Forty-seven percent of patients didn’t have a preference for either method, but for those who did have a preference, more than twice as many preferred weighing. Conclusion With proper education, weighing Baxter Infusors at home with kitchen scales can be an accepted and objective alternative to the current recommendation of visual inspection.


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karine Arrhenius ◽  
Oliver Büker

AbstractThe study presents an optimised method to correct flow rates measured with a LFE flowmeter pre-set on methane while used for gas mixtures of unknown composition at the time of the measurement. The method requires the correction of the flow rate using a factor based on the viscosity of the gas mixtures once the composition is accurately known. The method has several different possible applications inclusive for the sampling of biogas and biomethane onto sorbent tubes for conformity assessment for the determination of siloxanes, terpenes and VOC in general. Five models for the calculation of the viscosity of the gas mixtures were compared and the models were used for ten binary mixtures and four multi-component mixtures. The results of the evaluation of the different models showed that the correction method using the viscosity of the mixtures calculated with the model of Reichenberg and Carr showed the smallest biases for binary mixtures. For multi-component mixtures, the best results were obtained when using the models of Lucas and Carr.


ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Musa Bah ◽  
Muhammad Afzal Rashid ◽  
Khalid Javed ◽  
Talat Naseer Pasha ◽  
Muhammad Qamer Shahid

Water buffaloes wallow in water to combat heat stress during summer. With the decreasing reservoirs for wallowing, the farmers use sprinklers to cool the buffaloes in Pakistan. These sprinklers use a large quantity of groundwater, which is becoming scarce. The objective of the current study was to determine the effect of different sprinkler flow rates on the physiological, behavioral, and production responses of Nili Ravi buffaloes during summer. Eighteen buffaloes were randomly subjected to three sprinkler flow rate treatments in a double replicated 3 × 3 Latin square design. The flow rates were 0.8, 1.25, and 2.0 L/min. During the study, the average afternoon temperature humidity index was 84.6. The 1.25 and 2.0 L/min groups had significantly lower rectal temperature and respiratory rates than the 0.8 L/min group. Water intake was significantly higher in the 0.8 L/min group. Daily milk yield was higher in the 1.25 and 2.0 L/min groups than in the 0.8 L/min group. These results suggested that the sprinkler flow rates > 0.8 L/min effectively cooled the buffaloes. The sprinkler flow rate of 1.25 L/min appeared to be more efficient, as it used 37.5% less water compared to the 2.0 L/min.


Sign in / Sign up

Export Citation Format

Share Document