Modeling of Flexible Bodies for Dynamic Analysis of Multi-Body Dynamic Systems Using Ritz Vectors

Author(s):  
Henry T. Wu ◽  
Neel K. Mani

Abstract Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to model flexible bodies for dynamic analysis of multi-body mechanical systems. The Ritz vectors are generated using the distribution of dynamic loading on a flexible body. Therefore they form the most efficient vector basis for the spatial distribution of the loadings. The Ritz vectors can be re-generated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The combinations of vibration normal modes and the proposed Ritz vectors thus form more efficient and accurate vector bases for the modeling of flexible bodies for dynamic analysis.

1994 ◽  
Vol 116 (2) ◽  
pp. 437-444 ◽  
Author(s):  
H. T. Wu ◽  
N. K. Mani

Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to be used in addition to vibration normal modes to form the modal basis to model flexible bodies for dynamic analysis of multibody mechanical systems. The Ritz vectors are generated using special distribution of the D’Alembert force and the kinematic constraint forces due to gross-body motion of a flexible body. Combined with vibration normal modes, they form more efficient vector bases for the modeling of flexible bodies comparing to using vibration normal modes alone or using the combination of static correction modes and vibration normal modes. Ritz vectors can be regenerated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The effectiveness of using the combination of vibration normal modes and the proposed Ritz vectors is demonstrated using a planar slider-crank mechanism.


2021 ◽  
Vol 224 ◽  
pp. 108729
Author(s):  
Shujie Zhao ◽  
Xun Meng ◽  
Huajun Li ◽  
Dejiang Li ◽  
Qiang Fu

2012 ◽  
Vol 51 ◽  
pp. 1-15 ◽  
Author(s):  
L. Sun ◽  
R. Eatock Taylor ◽  
Y.S. Choo

2014 ◽  
Author(s):  
Yuan feng Xia ◽  
Jian Pang ◽  
Chengtai Hu ◽  
Cui Zhou ◽  
Cong Wu

Sign in / Sign up

Export Citation Format

Share Document