Effect of Surface Roughness and Joint Material on Torque-Tension Relationship in Threaded Fasteners

Author(s):  
S. A. Nassar ◽  
T. S. Sun

An experimental study is presented in order to investigate the effect of surface roughness on the torque-tension relationship in bolted assemblies. Three levels of surface roughness are considered for the fastener underhead and the joint surface; namely, low, medium, and high levels of surface roughness. The study is conducted for two joint materials, two fastener classes, and for coarse and fine threads. In this study, the torque-tension data is expressed in terms of the value of the nut factor as well as its scatter. The effect of the number of tightenings on surface roughness and on the torque-tension relationship is investigated as well. The surface roughness is measured before tightening, and after each loosening using a WYKO optical profiling system. An M12 fastener is used in this study. Both fine and coarse threads and fastener material Classes 8.8 and 10.9 for M12 fasteners are used in this study. The torque-tension data is analyzed for both steel and aluminum joints. The safety and reliability of bolted assemblies are mainly determined by the level and the stability of the clamp load provided by the initial tightening of the threaded fastener. The value of initial clamp load, which is achieved by a specific level of tightening torque, is highly sensitive to the friction torque components. This study provides an insight into the reliability of the existing engineering practices for estimating the clamp load level from the tightening torque. Hence, the findings of the study would help enhance the reliability and the safety of bolted assemblies, especially in critical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shi-kun Lu ◽  
Deng-xin Hua ◽  
Yan Li ◽  
Fang-yuan Cui ◽  
Peng-yang Li

At present, few scholars have studied the effect of surface roughness on assembly stiffness. The influence of the joint surface stiffness on the overall stiffness is neglected. In this paper, a new method for calculating the stiffness of bolted joints is presented. The effect of joint surface stiffness on the overall stiffness is considered. Firstly, the relationship between load and displacement between cylinder and cylinder (including the joint surface with certain roughness) is studied, and the stiffness characteristic expression of the joint surface is obtained; the results are compared with the traditional stiffness calculation theory, and then, the influence of bolt connection surface on bolt connection is studied and compared with the stiffness calculation results of traditional bolt connection. The results show that the theoretical model presented in this paper is more practical.



Author(s):  
Hacer O¨zperk ◽  
Vedat Temiz

The purpose of this study is to investigate the effects of shaft surface roughness, speed, seal inner diameter, and lip geometry on the rotary lip seal’s performance. For this reason, a test system was developed. In this test system, a cylinder block is placed on four load cells to monitor the friction torque generated between seal and counter face. Radial lip geometry was taken as the prior criteria to group the seals for experiments. Two different profiles (with and without dust lip) and three different inner diameters (30-35-40 mm) were selected for the tests. Three shaft surface roughness values for each diameter were also tested. One shaft surface roughness value is between the limits that are recommended in standards, and two others are greater and less than that limits. At the end of the systematical experiments, variations of friction torque with respect to shaft surface roughness, lip profile and shaft diameter have been determined.



Shinku ◽  
1987 ◽  
Vol 30 (10) ◽  
pp. 793-798 ◽  
Author(s):  
Masao HIRASAKA ◽  
Masao HASHIBA ◽  
Toshiroh YAMASHINA




2021 ◽  
pp. 096739112110055
Author(s):  
Gunce Ozan ◽  
Meltem Mert Eren ◽  
Cansu Vatansever ◽  
Ugur Erdemir

Surface sealants are reported to ensure surface smoothness and improve the surface quality of composite restorations. These sealants should also reduce the bacterial adhesion on composite surfaces however, there is not much information regarding their performance on bulk-fill composite materials. The aim of this study was to evaluate the effect of surface sealant application on surface roughness and bacterial adhesion of various restorative materials. Disc-shaped samples were prepared from a compomer, a conventional composite and three bulk-fill composites. Specimens of each group were divided into two groups (n = 9): with/without surface sealant (Biscover LV, [BLV]). Surface roughness values were examined by profilometry and two samples of each group were examined for bacterial adhesion on a confocal laser scanning microscope (CLSM). Bacterial counts were calculated by both broth cultivation and microscopic images. Results were analyzed with one-way ANOVA and Bonferroni/Dunn tests. Following the BLV application, there was a decrease in the surface roughness values of all groups however, only Tetric N-Ceram Bulk and Beautifil-Bulk groups showed significantly smoother surfaces (p < 0.001). There were no significant differences among material groups without BLV application. Evaluating bacterial adhesion after BLV application, conventional composite had the lowest values among all followed by the compomer group. Beautifil-Bulk had significantly the highest bacterial adhesion (p < 0.05), followed by Tetric N-Ceram Bulk group. Without BLV application, there was no significant difference among bacterial adhesion values of groups (p > 0.05). CLSM images showed cell viability in groups. Bulk-fill composites showed higher bacterial adhesion than conventional composite and compomer materials. The surface sealant was found to be highly effective in lowering bacterial adhesion, but not so superior in smoothing the surfaces of restorative materials. So, surface sealants could be used on the restorations of patients with high caries risk.



2006 ◽  
Vol 58 (4) ◽  
pp. 176-186 ◽  
Author(s):  
N.M. Bujurke ◽  
N.B. Naduvinamani ◽  
Syeda Tasneem Fathima ◽  
S.S. Benchalli


Sign in / Sign up

Export Citation Format

Share Document