Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion

Author(s):  
Dongming Gan ◽  
Jian S. Dai ◽  
Jorge Dias ◽  
Lakmal D. Seneviratne

This paper presents a metamorphic parallel mechanism which can switch its motion between pure translation (3T) and pure rotation (3R) motion. This feature stems from a reconfigurable Hooke (rT) joint of which one of the rotation axes can be altered freely. More than that, based on the reconfiguration of the rT joint, workspace of both 3T and 3R motion can be tunable and the rotation center of the 3R motion can be controlled along a line perpendicular to the base plane. Kinematics analysis is presented based on the geometric constraint of the parallel mechanism covering both 3T and 3R motion. Following these screw theory based motion/force transmission equations are obtained and their characteristics are investigated and linked to the singularity analysis using Jacobian matrix. Motion/force transmission indices can be used to optimize basic design parameters of the metamorphic parallel mechanism. This provides reference of this mechanism for potential applications requiring 3T and 3R motion.

2016 ◽  
Vol 8 (5) ◽  
Author(s):  
Dongming Gan ◽  
Jian S. Dai ◽  
Jorge Dias ◽  
Lakmal D. Seneviratne

This paper presents a metamorphic parallel mechanism (MPM) which can switch its motion between pure translation (3T) and pure rotation (3R). This feature stems from a reconfigurable Hooke (rT) joint of which one of the rotation axes can be altered freely. More than that, based on the reconfiguration of the rT joint, workspace of both 3T and 3R motion can be tunable, and the rotation center of the 3R motion can be controlled along a line perpendicular to the base plane. Kinematics analysis is presented based on the geometric constraints of the parallel mechanism covering both 3T and 3R motion. Following this, screw theory based motion/force transmission equations are obtained, and their characteristics are investigated and linked to the singularity analysis using Jacobian matrix. Motion/force transmission indices can be used to optimize basic design parameters of the MPM. This provides reference of this mechanism for potential applications requiring 3T and 3R motion.


Author(s):  
Long Kang ◽  
Se-Min Oh ◽  
Wheekuk Kim ◽  
Byung-Ju Yi

In this paper, a new gravity-balanced 3T1R parallel mechanism is addressed. Firstly, structure description, inverse and forward kinematic modeling are performed in detail. Secondly, Jacobian derivation based on screw theory and singularity analysis using Grassmann Line Geometry is performed, and then optimal kinematic design with respect to workspace size, kinematic isotropy and maximum force transmission ratio are conducted. Thirdly, the gravity balancing design using both counterweights and springs is proposed and a prototype of this mechanism is also presented. Results of analysis show that the proposed mechanism has quite a few potential applications.


Author(s):  
Dongming Gan ◽  
Jian S. Dai ◽  
Jorge Dias ◽  
Lakmal D. Seneviratne

This paper presents a metamorphic parallel mechanism which can switch its motion between one translation and two rotation (1T2R) motion and pure rotation (3R) motion. This feature stems from a reconfigurable revolute (rR) joint of which the rotation axis can be altered freely. Screw based geometric constraint is used to demonstrate the reconfiguration and mobility. Unified inverse kinematics, Jacobian matrix and motion/force transmissibility are provided using screws. Based on those, singularity loci are illustrated and optimal design of some key parameters are conducted considering both the 1T2R and 3R phases. Trade-off can be made between the maximum singularity-free workspace and transmission performance based on the optimal design results in this paper for specific applications requiring 1T2R and 3R motion.


2015 ◽  
Vol 6 (1) ◽  
pp. 57-64 ◽  
Author(s):  
B. Li ◽  
Y. M. Li ◽  
X. H. Zhao ◽  
W. M. Ge

Abstract. In this paper, a modified 3-DOF (degrees of freedom) translational parallel mechanism (TPM) three-CRU (C, R, and U represent the cylindrical, revolute, and universal joints, respectively) structure is proposed. The architecture of the TPM is comprised of a moving platform attached to a base through three CRU jointed serial linkages. The prismatic motions of the cylindrical joints are considered to be actively actuated. Kinematics and performance of the TPM are studied systematically. Firstly, the structural characteristics of the mechanism are described, and then some comparisons are made with the existing 3-CRU parallel mechanisms. Although these two 3-CRU parallel mechanisms are both composed of the same CRU limbs, the types of freedoms are completely different due to the different arrangements of limbs. The DOFs of this TPM are analyzed by means of screw theory. Secondly, both the inverse and forward displacements are derived in closed form, and then these two problems are calculated directly in explicit form. Thereafter, the Jacobian matrix of the mechanism is derived, the performances of the mechanism are evaluated based on the conditioning index, and the performance of a 3-CRU TPM changing with the actuator layout angle is investigated. Thirdly, the workspace of the mechanism is obtained based on the forward position analysis, and the reachable workspace volume is derived when the actuator layout angle is changed. Finally, some conclusions are given and the potential applications of the mechanism are pointed out.


2017 ◽  
Vol 29 (3) ◽  
pp. 520-527 ◽  
Author(s):  
Guangying Ma ◽  
◽  
Yuan Chen ◽  
Yunlong Yao ◽  
Jun Gao

[abstFig src='/00290003/07.jpg' width='300' text='4DOF serial-parallel hybrid manipulator' ] For adapting to the complex working environments of amphibious manipulators, we proposed a serial-parallel hybrid quadruped walking manipulator. We simplified the leg mechanism of the serial-parallel hybrid manipulator as a 2UPU-UPR parallel mechanism, and then analyzed the degree of freedom (DOF) of the parallel mechanism by using the screw theory. The results show that the position of the<span class=”bold”>Y</span>direction and the pose of the<span class=”bold”>Z</span>direction are two independent variables which influence the mechanism movement. We deduced the kinematics inverse solution and the velocity Jacobian matrix of the 2UPU-UPR parallel mechanism. Based on the analysis of the Jacobian matrix, three kinds of kinematic singularities of the 2UPU-UPR parallel mechanism are identified. The results show that the 2UPU-UPR parallel mechanism doesn’t have the kinematic inverse singularity, but it has three kinds of kinematic forward singularities and two kinds of combined singularities. Finally, the variation of motorial parameters of this 2UPU-UPR parallel mechanism was discussed by a calculation example.


2020 ◽  
Author(s):  
Chen Zhao ◽  
Jingke Song ◽  
Xuechan Chen ◽  
Ziming Chen ◽  
Huafeng Ding

Abstract This paper focuses on a 2R1T 3-UPU (U for universal joint and P for prismatic joint) parallel mechanism (PM) with two rotational and one translational (2R1T) degrees of freedom (DOFs) and the ability of multiple remote centers of motion (M-RCM). The singularity analysis based on the indexes of motion/force transmissibility and constraint shows that this PM has transmission singularity, constraint singularity, mixed singularity and limb singularity. To solve these singularproblems, the quantifiable redundancy transmission index (RTI) and the redundancy constraint index (RCI) are proposed for optimum seeking of redundant actuators for this PM. Then the appropriate redundant actuators are selected and the working scheme for redundant actuators near the corresponding singular configuration are given to help the PM go through the singularity.


Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


Robotica ◽  
2015 ◽  
Vol 35 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Kefei Wen ◽  
TaeWon Seo ◽  
Jeh Won Lee

SUMMARYSingular configurations of parallel manipulators (PMs) are special poses in which the manipulators cannot maintain their inherent infinite rigidity. These configurations are very important because they prevent the manipulator from being controlled properly, or the manipulator could be damaged. A geometric approach is introduced to identify singular conditions of planar parallel manipulators (PPMs) in this paper. The approach is based on screw theory, Grassmann–Cayley Algebra (GCA), and the static Jacobian matrix. The static Jacobian can be obtained more easily than the kinematic ones in PPMs. The Jacobian is expressed and analyzed by the join and meet operations of GCA. The singular configurations can be divided into three classes. This approach is applied to ten types of common PPMs consisting of three identical legs with one actuated joint and two passive joints.


Author(s):  
Hee-Byoung Choi ◽  
Atsushi Konno ◽  
Masaru Uchiyama

The closed-loop structure of a parallel robot results in complex kinematic singularities in the workspace. Singularity analysis become important in design, motion, planning, and control of parallel robot. The traditional method to determine a singular configurations is to find the determinant of the Jacobian matrix. However, the Jacobian matrix of a parallel manipulator is complex in general, and thus it is not easy to find the determinant of the Jacobian matrix. In this paper, we focus on the singularity analysis of a novel 4-DOFs parallel robot H4 based on screw theory. Two types singularities, i.e., the forward and inverse singularities, have been identified.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Daxing Zeng ◽  
Zhen Huang ◽  
Wenjuan Lu

In this paper, a 3-DOF 3-PRUR parallel mechanism (PM) is chosen for performance analysis and optimal design. First, the mobility of the PM is analyzed by using screw theory. Then, the kinematics of this PM is studied based on the geometrical characteristics and the Jacobian matrix is derived. Furthermore, we research some performance indices with respect to the Jacobian matrix over the whole workspace and nondimensional parameters when the input is given, and their performance atlases are obtained with different inputs. Finally, the optimal design of the PM is determined according to the performance atlases, and some examples are presented.


Sign in / Sign up

Export Citation Format

Share Document