Data Driven Prognostics With Lack of Training Data Sets

Author(s):  
Zhimin Xi ◽  
Xiangxue Zhao

Data-driven prognostics typically requires sufficient offline training data sets for accurate remaining useful life (RUL) prediction of engineering products. This paper investigates performances of typical data-driven methodologies when the amount of training data sets is insufficient. The purpose is to better understand these methodologies especially when offline training datasets are insufficient. The neural network, similarity-based approach, and copula-based sampling approach were investigated when only three run-to-failure training units were available. The example of lithium-ion (Li-ion) battery capacity degradation was employed for the demonstration.

2018 ◽  
Vol 929 ◽  
pp. 93-102
Author(s):  
Didik Djoko Susilo ◽  
Achmad Widodo ◽  
Toni Prahasto ◽  
Muhammad Nizam

Lithium-ion batteries play a critical role in the reliability and safety of a system. Battery health monitoring and remaining useful life (RUL) prediction are needed to prevent catastrophic failure of the battery. The aim of this research is to develop a data-driven method to monitor the batteries state of health and predict their RUL by using the battery capacity degradation data. This paper also investigated the effect of prediction starting point to the RUL prediction error. One of the data-driven method drawbacks is the need of a large amount of data to obtain accurate prediction. This paper proposed a method to generate a series of degradation data that follow the Gaussian distribution based on limited battery capacity degradation data. The prognostic model was constructed from the new data using least square support vector machine (LSSVM) regression. The remaining useful life prediction was carried out by extrapolating the model until reach the end of life threshold. The method was applied to three differences lithium-ion batteries capacity data. The results showed that the proposed method has good performance. The method can predict the lithium-ion batteries RUL with a small error, and the optimal RUL starting point was found at the point where the battery has experienced the highest capacity recovery due to the self-recharge phenomenon.


2021 ◽  
Vol 13 (23) ◽  
pp. 13333
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla Shahadat Hossain Lipu ◽  
Aini Hussain ◽  
Mohamad Hanif Md Saad

Remaining Useful Life (RUL) prediction for lithium-ion batteries has received increasing attention as it evaluates the reliability of batteries to determine the advent of failure and mitigate battery risks. The accurate prediction of RUL can ensure safe operation and prevent risk failure and unwanted catastrophic occurrence of the battery storage system. However, precise prediction for RUL is challenging due to the battery capacity degradation and performance variation under temperature and aging impacts. Therefore, this paper proposes the Multi-Channel Input (MCI) profile with the Recurrent Neural Network (RNN) algorithm to predict RUL for lithium-ion batteries under the various combinations of datasets. Two methodologies, namely the Single-Channel Input (SCI) profile and the MCI profile, are implemented, and their results are analyzed. The verification of the proposed model is carried out by combining various datasets provided by NASA. The experimental results suggest that the MCI profile-based method demonstrates better prediction results than the SCI profile-based method with a significant reduction in prediction error with regard to various evaluation metrics. Additionally, the comparative analysis has illustrated that the proposed RNN method significantly outperforms the Feed Forward Neural Network (FFNN), Back Propagation Neural Network (BPNN), Function Fitting Neural Network (FNN), and Cascade Forward Neural Network (CFNN) under different battery datasets.


Author(s):  
Shuai Wang ◽  
Wei Han ◽  
Lifei Chen ◽  
Xiaochen Zhang ◽  
Michael Pecht

A new data-driven prognostic method based on an interacting multiple model particle filter (IMMPF) is proposed for use in the determination of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries and the probability distribution function (PDF) of the uncertainty associated with the RUL. An IMMPF is applied to different state equations. The battery capacity degradation model is very important in the prediction of the RUL of Li-ion batteries. The IMMPF method is applied to the estimation of the RUL of Li-ion batteries using the three improved models. Three case studies are provided to validate the proposed method. The experimental results show that the one-dimensional state equation particle filter (PF) is more suitable for estimating the trend of battery capacity in the long term. The proposed method involving interacting multiple models demonstrated a stable and high prediction accuracy, as well as the capability to narrow the uncertainty in the PDF of the RUL prediction for Li-ion batteries.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3678 ◽  
Author(s):  
Tianfei Sun ◽  
Bizhong Xia ◽  
Yifan Liu ◽  
Yongzhi Lai ◽  
Weiwei Zheng ◽  
...  

The prognosis of lithium-ion batteries for their remaining useful life is an essential technology in prognostics and health management (PHM). In this paper, we propose a novel hybrid prediction method based on particle filter (PF) and extreme learning machine (ELM). First, we use ELM to simulate the battery capacity degradation trend. Second, PF is applied to update the random parameters of the ELM in real-time. An extreme learning machine prognosis model, based on particle filter (PFELM), is established. In order to verify the validity of this method, our proposed approach is compared with the standard ELM, the multi-layer perceptron prediction model, based on PF (PFMLP), as well as the neural network prediction model, based on bat-particle filter (BATPFNN), using the batteries testing datasets of the National Aeronautics and Space Administration (NASA) Ames Research Center. The results show that our proposed approach has better ability to simulate battery capacity degradation trends, better robustness, and higher Remaining Useful Life (RUL) prognosis accuracy than the standard ELM, the PFMLP, and the BATPFNN under the same conditions.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 375 ◽  
Author(s):  
Jianfang Jia ◽  
Jianyu Liang ◽  
Yuanhao Shi ◽  
Jie Wen ◽  
Xiaoqiong Pang ◽  
...  

The state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries are two important factors which are normally predicted using the battery capacity. However, it is difficult to directly measure the capacity of lithium-ion batteries for online applications. In this paper, indirect health indicators (IHIs) are extracted from the curves of voltage, current, and temperature in the process of charging and discharging lithium-ion batteries, which respond to the battery capacity degradation process. A few reasonable indicators are selected as the inputs of SOH prediction by the grey relation analysis method. The short-term SOH prediction is carried out by combining the Gaussian process regression (GPR) method with probability predictions. Then, considering that there is a certain mapping relationship between SOH and RUL, three IHIs and the present SOH value are utilized to predict RUL of lithium-ion batteries through the GPR model. The results show that the proposed method has high prediction accuracy.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 845
Author(s):  
Dongheun Han ◽  
Chulwoo Lee ◽  
Hyeongyeop Kang

The neural-network-based human activity recognition (HAR) technique is being increasingly used for activity recognition in virtual reality (VR) users. The major issue of a such technique is the collection large-scale training datasets which are key for deriving a robust recognition model. However, collecting large-scale data is a costly and time-consuming process. Furthermore, increasing the number of activities to be classified will require a much larger number of training datasets. Since training the model with a sparse dataset can only provide limited features to recognition models, it can cause problems such as overfitting and suboptimal results. In this paper, we present a data augmentation technique named gravity control-based augmentation (GCDA) to alleviate the sparse data problem by generating new training data based on the existing data. The benefits of the symmetrical structure of the data are that it increased the number of data while preserving the properties of the data. The core concept of GCDA is two-fold: (1) decomposing the acceleration data obtained from the inertial measurement unit (IMU) into zero-gravity acceleration and gravitational acceleration, and augmenting them separately, and (2) exploiting gravity as a directional feature and controlling it to augment training datasets. Through the comparative evaluations, we validated that the application of GCDA to training datasets showed a larger improvement in classification accuracy (96.39%) compared to the typical data augmentation methods (92.29%) applied and those that did not apply the augmentation method (85.21%).


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Peipei Xu ◽  
Junqiu Li ◽  
Chao Sun ◽  
Guodong Yang ◽  
Fengchun Sun

The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore, the actual capacity and battery parameters change in real time with the aging of the batteries. Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares (FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity degradation model is proposed to perform the battery capacity prediction online. Furthermore, an online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less than 1.3%.


Author(s):  
Zhimin Xi ◽  
Rong Jing ◽  
Pingfeng Wang ◽  
Chao Hu

This paper develops a Copula-based sampling method for data-driven prognostics and health management (PHM). The principal idea is to first build statistical relationship between failure time and the time realizations at specified degradation levels on the basis of off-line training data sets, then identify possible failure times for on-line testing units based on the constructed statistical model and available on-line testing data. Specifically, three technical components are proposed to implement the methodology. First of all, a generic health index system is proposed to represent the health degradation of engineering systems. Next, a Copula-based modeling is proposed to build statistical relationship between failure time and the time realizations at specified degradation levels. Finally, a sampling approach is proposed to estimate the failure time and remaining useful life (RUL) of on-line testing units. Two case studies, including a bearing system in electric cooling fans and a 2008 IEEE PHM challenge problem, are employed to demonstrate the effectiveness of the proposed methodology.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Chaolong Zhang ◽  
Yigang He ◽  
Lifeng Yuan ◽  
Sheng Xiang ◽  
Jinping Wang

Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery’s remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately.


Sign in / Sign up

Export Citation Format

Share Document