Data Probe: A Tool for EXPRESS-Based Data

Author(s):  
K. C. Morris

Abstract The problem of sharing data has many facets. The need to share data across multiple enterprises, different hardware platforms, different data storage paradigms and systems, and a variety of network architectures is growing. The emerging Standard for The Exchange of Product Model Data (STEP), being developed in the International Organization for Standardization (ISO), addresses this need by providing information models, called application protocols, which clearly and unambiguously describe data. The validity of these information models is essential for success in sharing data in a highly automated engineering environment. This paper describes the Data Probe: a tool for examining, editing, and managing EXPRESS-based data. The Data Probe tool supports the validation of STEP application protocols. The paper includes a description of the software architecture, the initial implementation, and plans for future enhancements. The software is designed as independent components which can be incorporated into other STEP-related systems or software requiring general purpose editing tools for structured information. The initial version of the Data Probe tool is based on two implementation mechanisms defined within STEP: the conceptual modeling language EXPRESS and the STEP exchange file format. Future work will focus on integrating a database system into the software. The software architecture and the use of object-oriented techniques enables code reusability and system extensibility and has been instrumental for a phased implementation. The software is under development at the National Institute of Standards and Technology and is in the public-domain. The software supports the Validation Testing System, part of the Application Protocol Development Environment, at the CALS-sponsored National PDES Testbed. (PDES, Product Data Exchange using STEP, is the U.S. effort in support of the international standard.)

1994 ◽  
Vol 10 (04) ◽  
pp. 281-296
Author(s):  
James T. Higney ◽  
Joanne J. Ouillette

Draft STEP (Standard for the Exchange of Product Model Data) application protocols, developed by the Navy Industry Digital Data Exchange Standards Committee (NIDDESC), have been issued to define the information content of a product model for a ship. The work reported in this paper combines the existing CAD models of the DDG51 Class design with a newly developed non-graphic database so that the overall information content complies with the STEP protocols. This work represents the first-time implementation of the application protocols and is a significant step in the Navy's plan to do the design of variants of the DDG51 Class totally in computer-aided design (CAD). The combined graphic/non-graphic database is referred to as the DDG51 engineering product model. Emphasis has been placed on populating the non-graphic database with the information necessary to perform all required engineering analyses. The basic schema described in this paper may be extended to support other areas of interest, such as logistics support.


2008 ◽  
Vol 24 (02) ◽  
pp. 92-98 ◽  
Author(s):  
Ben Kassel ◽  
Ted Briggs

This paper considers an alternate approach to the exchange of ship product model data based on general-purpose STEP application protocols. The vision is to provide the functionality defined in the shipbuilding application protocols using a combination of STEP AP239, AP214, and reference data libraries. It is expected that AP239 translators will soon be available, thus enabling the exchange of significant portions of ship product model data.


2001 ◽  
Vol 17 (03) ◽  
pp. 151-160
Author(s):  
B. Gischner ◽  
B. Kassel ◽  
P. Lazo ◽  
R. Wood ◽  
J. Wyman

Evolution of STEP (ESTEP) is a task within the MARITECH-ASE Integrated Shipbuilding Environment (ISE) Project building upon the work of the MariSTEP consortium and the NIDDESC standards development efforts. The purpose of ESTEP is to validate product model standards for the shipbuilding industry, implement product model data translators, and to further the development of Shipbuilding Application Protocols. Three of the major goals of ESTEP are developing a production-quality ship structure data exchange capability, expanding shipbuilding piping implementation efforts, and the exchange of parts and part libraries. Piping applications between the plant design industry and the shipbuilding industry are similar, and the AP used for translation of plant piping data (AP227–Plant Spatial Configuration) is much further along in the ISO process than the ISO Shipbuilding Piping AP (AP217). Both application protocols have been analyzed to determine the feasibility of using the plant AP as the ISE piping data exchange model. Shipbuilding structures will be expanding on the MariSTEP implementation that was based on a subset of the detail design data model. This will include the development of a STEP conformance class, a subset of the data model that covers a particular ship life-cycle phase or business case. Parts and part libraries are a joint effort with the ISE Electronic Commerce (EC) task to define an exchange mechanism. The critical need for such a mechanism was identified early in the MariSTEP exchange effort. ESTEP plans to exchange library part definitions, including geometric, parametric, and nongraphic attribute data. The current status, the achievements, and the future implementation plans of the ISE ESTEP are reviewed in this paper.


Author(s):  
Mehmet I. Sarigecili ◽  
Utpal Roy ◽  
Sudarsan Rachuri

Information exchange and sharing become a necessity for digital factory but they have been more challenging as the industry is computerized more. This is mainly because the capabilities of computerized systems have grown significantly in a very rapid pace in their own information structure, and they require to retrieve various data from different computer systems. ISO 10303–STEP has been developed to provide a neutral format for exchanging product data. However, implementation of STEP has several issues, including the following two: (1) the complete STEP file should be processed even for querying a small set of data, and (2) information required for realizing any functional activity (e.g., any analysis on any part of a product) is not explicitly identified. Hence, in this study, functionality-based conformance classes (FCCs) are developed to organize the current conformance classes (CCs) (which are the classes required to be implemented fully in order to be conformant to any particular STEP standard) for supporting different functional activities. Following the concept of data exchange specification (DEX)/template, several templates that are repeatedly used small information groups are introduced in order to create manageable sets of data constructs. In this study, the FCCs for 1D tolerance analysis are developed by enriching the available STEP information models with GD&T. The use of extended STEP models is illustrated with a case study.


1994 ◽  
Vol 10 (01) ◽  
pp. 31-38
Author(s):  
Burton Gischner ◽  
Gregory Morea

The Initial Graphics Exchange Specification (IGES) was first developed in 1980. It has evolved with continual improvements to the current Version 5.1 which was published in October 1991 [1]. Although IGES has proved to be a very valuable tool, difficulties have been encountered in using it for sophisticated transfers, such as for product models or complicated drawings. The long range solution to these difficulties is the emergence of the Standard for the Exchange of Product Model Data (STEP). The Navy/Industry Digital Data Exchange Standards Committee (NIDDESC) has been a leading player in the development of this international standard. However, in the interim, NIDDESC is also spearheading the efforts to enhance the use of IGES by developing application protocols. Two of these application protocols, for 3D Piping and Engineering Drawings, are the first ones to be developed by the IGES/ PDES (Product Data Exchange using STEP) Organization (IPO), and will lead the way to more productive data transfer before the development of STEP. They will be referenced by the U.S. Department of Defense (DOD) standard for digital data transfer, MIL-D-28000 [2], and should greatly facilitate the occurrence of effective data transfer in these two disciplines. Furthermore, the use of these IGES application protocols is expected to provide significant guidance in the development of application protocols for the emerging STEP standard. This paper focuses on the development of these two application protocols, the involvement of NIDDESC and the shipbuilding industry (as well as the participation of other industry users and vendors), and the significant benefits to be derived from the adoption of these standards.


1997 ◽  
Vol 13 (02) ◽  
pp. 111-124
Author(s):  
Jeff Wyman ◽  
Dan Wooley ◽  
Burt Gischner ◽  
Joyce Howell

Effective data exchange of product model data is essential for future competition in the global marketplace. Many efforts have been undertaken in recent years to establish a transfer mechanism for product model data in the Shipbuilding industry. These include the development of the STEP Standard, creation of the NIDDESC Application Protocols, and efforts of the European NEUTRABAS and MARITIME Projects. The ARPA/MARITECH Project for "Development of STEP Ship Product Model Database and Translators for Data Exchange Between Shipyards" provides a unique opportunity to attempt to implement the still developing Standards for Product Model Exchange and to enable their use for data exchange between the major US Shipyards. The project will create and populate a prototype product model database, develop translators for exchange of product model data between Shipyards, and facilitate adoption of the Shipbuilding Application Protocols as part of the emerging International Standard (STEP). These ambitious goals are being undertaken by a consortium of US Shipbuilders, their CAD vendors, and STEP experts. The participants will help develop a product model data exchange capability for the entire Shipbuilding industry, while they enhance their own ability to compete in the global marketplace.


Author(s):  
Adarsh Venkiteswaran ◽  
Sayed Mohammad Hejazi ◽  
Deepanjan Biswas ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Industries are continuously trying to improve the time to market through automation and optimization of existing product development processes. Large companies vow to save significant time and resources through seamless communication of data between design, manufacturing, supply chain and quality assurance teams. In this context, Model Based Definition/Engineering (MBD) / (MBE) has gained popularity, particularly in its effort to replace traditional engineering drawings and documentations with a unified digital product model in a multi-disciplinary environment. Widely used 3D data exchange models (STEP AP 203, 214) contains mere shape information, which does not provide much value for reuse in downstream manufacturing applications. However, the latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering” aims to support smart manufacturing by capturing semantic Product Manufacturing Information (PMI) within the 3D model and also helping with long-term archival. As a primary, for interoperability of Geometric Dimensions & Tolerances (GD&T) through AP 242, CAx Implementor Forum has published a set of recommended practices for the implementation of a translator. In line with these recommendations, this paper discusses the implementation of an AP 203 to AP 242 translator by attaching semantic GD&T available in an in-house Constraint Tolerance Graph (CTF) file. Further, semantic GD&T data can be automatically consumed by downstream applications such as Computer Aided Process Planning (CAPP), Computer Aided Inspection (CAI), Computer Aided Tolerance Systems (CATS) and Coordinate Measuring Machines (CMM). Also, this paper will briefly touch base on the important elements that will constitute a comprehensive product data model for model-based interoperability.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 327
Author(s):  
Julio Garrido ◽  
Diego Silva ◽  
Juan Sáez

STEP-NC (Standard for the Exchange of Product Model Data–Numerical Control) for metal milling and turning is not implemented by industrial computer numerical controllers. Solutions reported are prototypes based on post-processing in G-code. Moreover, minority machining processes, such as stone cutting, have not yet been contemplated in the STEP-NC standard. This article takes that sector as a use case. An extended STEP-NC model for circular saw stone-cutting operations is proposed, and a prototype automation implementation is developed to work with this extended model. This article shows how modern technological resources for coordinated axes control provided by many industrial controllers for the automation of general-purpose machines can speed up the processes of implementing STEP-NC numerical controllers. This article proposes a mixed and flexible approach for STEP-NC-based machine automation, where different strategies can coexist when it comes to executing STEP-NC machining files, so controllers do not need to implement the standard in an exhaustive way for all the possible features, but only at selected ones when convenient. This is demonstrated in a prototype implementation which is able to process STEP-NC product files with mixed-feature types: standard milling and non-standard sawblade features for stone processing.


2021 ◽  
Author(s):  
Jonathan B. Chan

System on Programmable Chip (SoPC) based embedded system development has been increasing, aiming for improved system design, testing, and cost savings in the workflow for Application Specific ICs (ASIC). We examine the development of Smart Home embedded systems, which have been traditionally based on a fixed processor and memory, with inflexible configuration. We investigate how more ability can be added by updating firmware without the burden of updating hardware, or using a full (but dedicated) general purpose computer system. Our development and implementation of the smart home controller is based on the SoPC development environment from Altera. The development board includes all the necessary parts such as processor, memory, and various communication interfaces. The initial implementation includes a simple protocol for communication between home appliances or devices and controller. This protocol allows data transfer between home appliances or devices and the controller, in turn allowing both to support more features. We have investigated and developed a home resource management application. The main resources being managed in this project are hot and cold water, electricity, and gas. We have introduced a number of expert rules to manage these resources. Additionally, we have developed a home simulator, with virtual appliances and devices, that communicates with the home controller. The simulator interacts with the SoPC based smart home embedded system developed in this project by generating messages representing a number of smart appliances in the home. It provides a useful testing environment for the smart home embedded system to verify its design goals.


2019 ◽  
Vol 12 (2) ◽  
pp. 44-58
Author(s):  
Agung Tri Safari

Submission of Customs Declaration including matters regulated in the Customs Law. Furthermore, this matter is further elaborated based on the Minister of Finance Regulation. Customs Declaration can be submitted in writing on the form or in the form of Electronic Data. For those in the form of Electronic Data, it is delivered by submitting Electronic Data storage media in the form of diskettes or etc  to the Customs Office or through an Electronic Data exchange system. DJBC has issued a policy related to the full implementation (Mandatory) of the submission of customs declaration documents through the PDE system based on KEP-415 / BC / 2016 and began to be implemented effectively on January 1, 2019. The purpose of this study is to evaluate whether this policy can be applied in all regions of Indonesia This research is descriptive with a qualitative approach. Based on secondary data, not all regions of Indonesia are affordable to the internet network. The constraints on the availability of infrastructure are a necessity that must be anticipated. The results of this discussion can be input into the improvement of related policies.


Sign in / Sign up

Export Citation Format

Share Document