Exergy-Based Optimization of Sub- and Supercritical Thermal Energy Storage Systems

Author(s):  
Louis A. Tse ◽  
Reza Baghaei Lakeh ◽  
Richard E. Wirz ◽  
Adrienne S. Lavine

In this work, energy and exergy analyses are applied to a thermal energy storage system employing a storage medium in the two-phase or supercritical regime. First, a numerical model is developed to investigate the transient thermodynamic and heat transfer characteristics of the storage system by coupling conservation of energy with an equation of state to model the spatial and temporal variations in fluid properties during the entire working cycle of the TES tank. Second, parametric studies are conducted to determine the impact of key variables (such as heat transfer fluid mass flow rate and maximum storage temperature) on both energy and exergy efficiencies. The optimum heat transfer fluid mass flow rate during charging must balance exergy destroyed due to heat transfer and exergy destroyed due to pressure losses, which have competing effects. Similarly, the optimum maximum storage fluid temperature is evaluated to optimize exergetic efficiency. By incorporating exergy-based optimization alongside traditional energy analyses, the results of this study evaluate the optimal values for key parameters in the design and operation of TES systems, as well as highlight opportunities to minimize thermodynamic losses.

2019 ◽  
Vol 3 (4) ◽  
pp. 88 ◽  
Author(s):  
Maria K. Koukou ◽  
George Dogkas ◽  
Michail Gr. Vrachopoulos ◽  
John Konstantaras ◽  
Christos Pagkalos ◽  
...  

A small-scale latent heat thermal energy storage (LHTES) unit for heating applications was studied experimentally using an organic phase change material (PCM). The unit comprised of a tank filled with the PCM, a staggered heat exchanger (HE) for transferring heat from and to the PCM, and a water pump to circulate water as a heat transfer fluid (HTF). The performance of the unit using the commercial organic paraffin A44 was studied in order to understand the thermal behavior of the system and the main parameters that influence heat transfer during the PCM melting and solidification processes. The latter will assist the design of a large-scale unit. The effect of flow rate was studied given that it significantly affects charging (melting) and discharging (solidification) processes. In addition, as organic PCMs have low thermal conductivity, the possible improvement of the PCM’s thermal behavior by means of nanoparticle addition was investigated. The obtained results were promising and showed that the use of graphite-based nanoplatelets improves the PCM thermal behavior. Charging was clearly faster and more efficient, while with the appropriate tuning of the HTF flow rate, an efficient discharging was accomplished.


2016 ◽  
Author(s):  
Qasim A. Ranjha ◽  
Nasser Vahedi ◽  
Alparslan Oztekin

Thermal energy storage by reversible gas-solid reaction has been selected as a thermochemical energy storage system. Simulations are conducted to investigate the dehydration of Ca(OH)2 and the hydration of CaO for thermal energy storage and retrieval, respectively. The rectangular packed bed is heated indirectly by air used as a heat transfer fluid (HTF) while the steam is transferred through the upper side of the bed. Transient mass transport and heat transfer equations coupled with chemical kinetics equations for a two dimensional geometry have been solved using finite element method. Numerical results have been validated by comparing against results of previous measurements and simulations. The effect of geometrical and operational parameters including the material properties on overall storage and retrieval process has been investigated. The co-current and counter-current flow arrangements for steam and heat transfer fluid have been considered.


2019 ◽  
Author(s):  
Kelly Osterman ◽  
Diego Guillen ◽  
D. Yogi Goswami

Abstract This paper numerically explores a high-temperature sensible-latent hybrid thermal energy storage system designed to store heat with output temperatures stabilized at approximately 550–600 °C for direct coupling with supercritical carbon dioxide (sCO2) power cycles operating at their design point. sCO2 and dry air at 25 MPa are used as heat transfer fluid (HTF) in a packed bed storage system that combines rocks as sensible heat storage and AlSi12 as latent heat storage. The base model using dry air at atmospheric pressure is compared to similar work done at ETH Zurich; the model is then extended for use with sCO2 to compare the performance of air and sCO2 at similar volumetric flow rates. It was found that sCO2 is capable of storing a significantly larger amount of energy (∼40 kWh) in the same time period as the air system (∼19 kWh), and can discharge that energy much quicker (1.5 hours compared to 4 hours). However, in order to achieve similar degrees of temperature stabilization, the total height of PCM had to be increased significantly, from 9 cm to 45 cm or more.


2018 ◽  
Vol 22 (2) ◽  
pp. 973-978 ◽  
Author(s):  
Rengarajan Ravi ◽  
Karunakaran Rajasekaran

This paper addresses an experimental investigation of a solar based thermal energy storage system to meet current energy demand especially for milk industry in Tamil Nadu, India. A solar based energy storage system has been designed to study the heat transfer characteristics of paraffin wax where it is filled in the middle tube, with cold heat transfer fluid flowing outer tube, inner tube, and both tubes at a time during solidification process in a horizontal triple concentric heat exchanger. In this study, main concentrations are temperature distributions in the energy storage materials such as paraffin wax during solidification process and total solidification time. Three heat recovery methods were used to solidify paraffin wax from the inside tube, outside tube, and both tubes methods to improve the heat transfer between heat transfer fluid and phase change materials. The experiment has been performed for different heat transfer fluid mass-flow rates and different inlet temperatures and predicted results shows that solidification time is reduced.


2016 ◽  
Vol 839 ◽  
pp. 14-22
Author(s):  
Rungrudee Boonsu ◽  
Sukruedee Sukchai

The research was performed on thermal energy storage prototype in Thailand. Concrete was used as the solid media sensible heat material in order to fulfill local material utilization which is easy to handle and low cost. Saturated steam was used for heat transfer fluid. The thermal energy storage prototype was composed of pipes embedded in a concrete storage block. The embedded pipes were used for transporting and distributing the heat transfer medium while sustaining the pressure. The heat exchanger was composed of 16 pipes with an inner diameter of 12 mm and wall thickness of 7 mm. They were distributed in a square arrangement of 4 by 4 pipes with a separation of 80 mm. The storage prototype had the dimensions of 0.5 x 0.5 x 4 m. The charging temperature was maintained at 180°C with the flow rates of 0.009, 0.0012 and 0.014 kg/s whereas the inlet temperature of the discharge was maintained at 110°C. The performance evaluation of a thermal energy storage prototype was investigated in the part of charging/discharging. The experiment found that the increase or decrease in storage temperature depends on the heat transfer fluid temperature, flow rates, and initial temperature. The energy efficiency of the thermal energy storage prototype at the flow rate of 0.012 kg/s was the best because it dramatically increased and gave 41% of energy efficiency in the first 45 minutes after which it continued to rise yet only gradually. Over 180 minutes of operation time, the energy efficiency at this flow rate was 53% and the exergy efficiency was 38%.


Author(s):  
Mahboobe Mahdavi ◽  
Saeed Tiari ◽  
Vivek Pawar

In the current study, the thermal characteristics of a low-temperature latent heat thermal energy storage system are studied numerically. A cylinder container encloses a paraffin-based PCM, which is heated via a heat transfer fluid passing through a tube at the center. Heat pipes are incorporated into the PCM to enhance the heat transfer rate between the heat transfer fluid and the PCM. In addition, high thermal conductive nanoparticles are dispersed into the PCM to increase its thermal conductivity. A transient model is developed using ANSYS-FLUENT to simulate the charging process and study the impact of heat pipes and nanoparticles on the performance of the system. The effects of different parameters, such as the quantities of heat pipes as well as the nanoparticles types and volume fraction, are investigated.


Author(s):  
S. Kuravi ◽  
J. Trahan ◽  
M. M. Rahman ◽  
D. Y. Goswami ◽  
E. K. Stefanakos

The transient behavior of a thermal energy storage system was studied numerically. The storage system is composed of cylindrical tube containing the phase change material (PCM) surrounded by the heat transfer fluid (HTF) that flows along the axial direction of the tube. The melting of PCM was solved using specific heat capacity method. The heat transfer inside the tubes was analyzed by solving the energy equation, which was coupled with the heat conduction equation in the container wall. The velocity profile was obtained by solving the annular flow outside the tubes. The parameters that control the thermal behavior were identified. Several numerical simulations were performed to assess the effects of the Reynolds number on the heat transfer process of the system during the melting of a PCM.


Sign in / Sign up

Export Citation Format

Share Document