Exact Null-Controllability of Abstract Evolution Equations With Boundary Input Operators by Smooth Control

Author(s):  
B. Shklyar

The paper deals with exact null-controllability problem for a linear control system governed by smooth controls. Applications to the exact null-controllability for partial parabolic equations are considered.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Benzion Shklyar

<p style='text-indent:20px;'>The exact null-controllability problem in the class of smooth controls with applications to interconnected systems was considered in [<xref ref-type="bibr" rid="b23">23</xref>] for the case of bounded input operators appearing in systems with distributed controls. The current paper constitutes an extension of the [<xref ref-type="bibr" rid="b23">23</xref>] for the case of unbounded input operators (with more emphasis on the controllability of interconnected systems). The proofs of the results of [<xref ref-type="bibr" rid="b23">23</xref>] for the case of bounded input operators are adopted for the case of unbounded input operators.</p>



Author(s):  
Paul Alphonse

We study the partial Gelfand–Shilov regularizing effect and the exponential decay for the solutions to evolution equations associated with a class of accretive non-selfadjoint quadratic operators, which fail to be globally hypoelliptic on the whole phase space. By taking advantage of the associated Gevrey regularizing effects, we study the null-controllability of parabolic equations posed on the whole Euclidean space associated with this class of possibly non-globally hypoelliptic quadratic operators. We prove that these parabolic equations are null-controllable in any positive time from thick control subsets. This thickness property is known to be a necessary and sufficient condition for the null-controllability of the heat equation posed on the whole Euclidean space. Our result shows that this geometric condition turns out to be a sufficient one for the null-controllability of a large class of quadratic differential operators.





2021 ◽  
Vol 19 (1) ◽  
pp. 111-120
Author(s):  
Qinghua Zhang ◽  
Zhizhong Tan

Abstract This paper deals with the abstract evolution equations in L s {L}^{s} -spaces with critical temporal weights. First, embedding and interpolation properties of the critical L s {L}^{s} -spaces with different exponents s s are investigated, then solvability of the linear evolution equation, attached to which the inhomogeneous term f f and its average Φ f \Phi f both lie in an L 1 / s s {L}_{1\hspace{-0.08em}\text{/}\hspace{-0.08em}s}^{s} -space, is established. Based on these results, Cauchy problem of the semi-linear evolution equation is treated, where the nonlinear operator F ( t , u ) F\left(t,u) has a growth number ρ ≥ s + 1 \rho \ge s+1 , and its asymptotic behavior acts like α ( t ) / t \alpha \left(t)\hspace{-0.1em}\text{/}\hspace{-0.1em}t as t → 0 t\to 0 for some bounded function α ( t ) \alpha \left(t) like ( − log t ) − p {\left(-\log t)}^{-p} with 2 ≤ p < ∞ 2\le p\lt \infty .



2002 ◽  
Vol 7 (7) ◽  
pp. 375-383 ◽  
Author(s):  
G. Aniculăesei ◽  
S. Aniţa

We study the internal exact null controllability of a nonlinear heat equation with homogeneous Dirichlet boundary condition. The method used combines the Kakutani fixed-point theorem and the Carleman estimates for the backward adjoint linearized system. The result extends to the case of boundary control.



Sign in / Sign up

Export Citation Format

Share Document