Viscous Oil-Water Flow in a Microchannel: Flow Patterns and Flow Development

Author(s):  
Hooman Foroughi ◽  
Masahiro Kawaji

The flow characteristics of a highly viscous oil and water mixture in a circular microchannel have been investigated. Water and silicone oil with a viscosity of 863 mPa.s were injected into a fused silica microchannel with a diameter of 250 μm. Before each experiment, the microchannel was initially saturated with either oil or water. In the initially oil-saturated case, different liquid-liquid flow patterns were observed and classified over a wide range of oil and water flow rates. As a special case, the flow of water at zero oil flow rate in a microchannel initially filled with silicone oil was also studied. When the microchannel was initially saturated with water, the oil formed a jet in water at the injection point but developed an instability at the oil-water interface downstream and eventually broke up into droplets.

2015 ◽  
Vol 27 (1) ◽  
pp. 1-26
Author(s):  
Anjali Dasari ◽  
Bharath Kumar Goshika ◽  
Subrata Kumar Majumder ◽  
Tapas K Mandal

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Chen ◽  
Hui Fan ◽  
Xinlin Zha ◽  
Wenwen Wang ◽  
Yi Wu ◽  
...  

AbstractHigh efficiency and anti-pollution oil/water separation membrane has been widely explored and researched. There are a large number of hydroxyl groups on the surface of silica, which has good wettability and can be used for oil-water separation membranes. Hydrophilic silica nanostructures with different morphologies were synthesized by changing templates and contents of trimethylbenzene (TMB). Here, silica nanospheres with radical pores, hollow silica nanospheres and worm-like silica nanotubes were separately sprayed on the PVA-co-PE nanofiber membrane (PM). The abundance of hydroxyl groups and porous structures on PM surfaces enabled the absorption of silica nanospheres through hydrogen bonds. Compared with different silica nanostructures, it was found that the silica/PM exhibited excellent super-hydrophilicity in air and underwater “oil-hating” properties. The PM was mass-produced in our lab through melt-extrusion-phase-separation technique. Therefore, the obtained membranes not only have excellent underwater superoleophobicity but also have a low-cost production. The prepared silica/PM composites were used to separate n-hexane/water, silicone oil/water and peanut oil water mixtures via filtration. As a result, they all exhibited efficient separation of oil/water mixture through gravity-driven filtration.


2011 ◽  
Vol 35 (3) ◽  
pp. 455-469 ◽  
Author(s):  
M. Sharma ◽  
P. Ravi ◽  
S. Ghosh ◽  
G. Das ◽  
P.K. Das

2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Abolore Abdulahi ◽  
Barry J. Azzopardi

This study was undertaken to look at the effect of a slight inclination of pipe on upward flow characteristics especially at 10 deg from vertical position. Air-silicone oil flows in a 67 mm diameter pipe have been investigated using a capacitance wire mesh sensor (WMS) and electrical capacitance tomography (ECT). They provide time and cross-sectionally resolved data on void fraction. Superficial gas and liquid velocities of 0.05–1.9 and 0.05–0.5 were studied. Statistical methods and visual observation methods were used to characterize the fluid flows obtained into different flow patterns. From the output results from the tomography instruments, flow patterns were identified using both the reconstructed images as well as the characteristic signatures of Probability density function (PDF) plots of the time series of cross-sectionally averaged void fraction. Bubbly, cap bubble, slug, and churn flows were observed when the pipe was deviated by 10 deg from vertical pipe for the range of superficial gas velocities considered.


Author(s):  
Ang Li ◽  
Jianfeng Bai ◽  
Yun Shen ◽  
Hang Jin ◽  
Wei Wang ◽  
...  

The three-phase separator has a wide range of applications in oil production industry. For the purpose of studying the effect of heating temperature, demulsifiers and water content on the separation of oil-water mixture in the three-phase separator, eight kinds of oil samples were taken from different oil transfer stations in Changqing Oilfield and the mixtures were prepared by stirring method. To simulate the two-stage dehydration process, the first stage dehydration experiments without any heating were performed on mixtures at the dose of 100ppm demulsifer at 20°C, and the water cut of these mixtures is the same as that of the gathering pipeline in each oil transfer station. The water cut of the upper crude oil was measured after 40 minutes, and the values of them ranged from 0.5 vol% to 65.2 vol%. No visual stratification was observed for the sample most difficult to separate, so it was selected to conduct the second stage dewatering process. Three bottles of the same mixture were prepared and heated to 30°C, 40°C and 50°C, respectively. The results showed that all of them stratified in 10 minutes, and the water-cut values of the upper oil layer were 1.4 vol%, 0.5 vol% and 0.3 vol%, respectively, compared to 65.2 vol% at 20°C. When the concentration of demulsifier was changed to 200ppm and 300ppm, the results exhibited almost no differences. So it is deduced that the further improvement of heating temperature and demulsifier dose have limited enhancement on oil-water separation. At Last, 35 vol%, 50 vol%, 70 vol% and 85 vol% water cut mixtures of the special oil sample were made to experiment as previously. In consequence, the 35 vol% water-cut emulsions presented a relatively slow rate of oil-water stratification at low heating temperature, and the oil content of the lower separated water was improved by the addition of demulsifier dosage above 100ppm when the water cut was 90 vol%. It is indicated that high heating temperature is necessarry for low water-cut mixtures oil-water separation and can be appropriately reduced to save energy consumption as the water cut continues to rise. The demulsifier dosage is also neccessary be controlled in high water cut period. These experimental data provide the basis for the further optimization operation of the three-phase separator.


2020 ◽  
Vol 59 (47) ◽  
pp. 20892-20902
Author(s):  
Haili Hu ◽  
Jiaqiang Jing ◽  
Sara Vahaji ◽  
Jiatong Tan ◽  
Jiyuan Tu

2015 ◽  
Vol 62 ◽  
pp. 85-98 ◽  
Author(s):  
Marcelo S. de Castro ◽  
Oscar M.H. Rodriguez

Sign in / Sign up

Export Citation Format

Share Document