Influence of Thermal Plume on Particle Inhalability of a Lying Mannequin in a Room

2021 ◽  
Author(s):  
Maryam Habibi ◽  
Mohsen Heidary ◽  
Mohammad Mehdi Tavakol ◽  
Goodarz Ahmadi

Abstract In this study, the dispersion and deposition of particles in the respiratory system attached to a mannequin lying down inside a room were investigated numerically. The respiratory system model was prepared by processing the CT scan images of a volunteer and was attached to a mannequin lying in the middle of a room. The flow field around the mannequin and effects of the thermal plume on the particle aspiration by the mannequin model was simulated using the Ansys-Fluent software. The aspiration efficiency of spherical particles in the airway was studied with the Lagrangian particle trajectory analysis, including the turbulence dispersion effects. For validation of numerical simulations, the aspiration efficiency of the particles obtained from the numerical solution was compared with the case of a standing mannequin. The results are presented for two different modes with upward and downward thermal plumes. For the first mode, due to the strong effect of the thermal plume in the upward direction, the aspiration efficiency of midrange particles increases. However, the aspiration efficiency of large micro-particles decreases for the first mode. For the second mode, with the downward thermal plume, the aspiration efficiency of small micro-particles increases significantly.

2016 ◽  
Vol 861 ◽  
pp. 433-437
Author(s):  
Petra Vojkůvková ◽  
Ondřej Šikula ◽  
Jan Weyr

During the cooking process, pollutant fumes are released into the ambient air by the convection plumes. These convective plumes - thermal plumes – are generated above hot surfaces and they need to be efficiently and ecologically ventilated in order to achieve appropriate internal climate. Calculation method for determination of volume flow rate of rising convective plumes is described in German standard DIN 18869 [1]. This article focuses on study of thermal plumes using numerical model in software Ansys Fluent, determinates volume flow rate of rising air and compares the simulation results with the results from known computational relations.


2017 ◽  
Vol 118 ◽  
pp. 159-172 ◽  
Author(s):  
Arash Naseri ◽  
Omid Abouali ◽  
Goodarz Ahmadi

Author(s):  
Mehrdad Azhdari ◽  
Mohammad Mehdi Tavakol ◽  
Goodarz Ahmadi

Abstract This study presents the results of a series of numerical simulations for airflow field and particle dispersion and deposition around a mannequin standing inside a ventilated room. A 3-D airway model was constructed from the nostril inlet to the end of 4th lung generation and was integrated into the standing mannequin model in the room. The computational domain included the region around the mannequin and inside the respiratory system. The room was ventilated by a mixing air-conditioning system that supplied air with a speed of 3m/s from a diffuser mounted on the top of the sidewall and exited from a damper mounted at the bottom of the side or front walls. In the first mode, the diffuser and damper were located on the wall in front of the mannequin and in the second mode on the wall at the right side of the mannequin. The mean airflow field inside the room was obtained by solving the Navier-Stokes and continuity equations using the Ansys-Fluent software. The k-ω SST transitional model was employed for turbulence modeling. Then, spherical particles with 5, 10, 20, and 40 μm diameter and unit density were released into the room, and their trajectories were tracked by using the Lagrangian trajectory analysis approach. Aspiration efficiency and deposition of particles for inhalation flow rates of 15 and 30 lit/min were analyzed with the improved discrete random walk (DRW) stochastic model using a user-defined function (UDF) coupled into the Ansys-Fluent discrete phase model. Simulation results for the mean airflow showed the formation of a large recirculation zone inside the room. In the first mode, the main recirculation zone formed behind mannequin that carried the flow streamlines toward the mannequin breathing zone. In the second mode, the recirculation formed in front of the mannequin face that led the streamlines out of the breathing zone. The simulation results for particle inhalation showed that the aspiration efficiency of particles is higher in the first ventilation mode compared to the second mode. Results also showed that the total deposition of particles in the airway passage increases as particle size increases.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2014 ◽  
Vol 703 ◽  
pp. 425-429
Author(s):  
Jun Fei Wu ◽  
Zhi Li ◽  
Fan Guo Meng ◽  
Ben Liang Yu

Compared with traditional screw pump,all-metal screw pump have more advantages in the oil extraction. In this paper, all-metal single screw pump's geometric model was made by PROE software; then the dynamic mesh technique was applied to mesh the model and constraint condition was applied in the ANSYS-FLUENT software. 3D flow field was numerical analyzed In that software, the impacts of screw speed on volume flow and volumetric efficiency were concluded, the conclusion can offer some valuable guidances to the all-metal single screw pump's design.


2015 ◽  
Author(s):  
Nilima C. Joshi ◽  
Ayaz J. Khan

ost of the flow phenomena important to modern technology involve turbulence. Propellers generally operate in the very complex flow field that may be highly turbulent and spatially non-uniform. Propeller skew is the single most effective design parameter which has significant influence on reducing propeller induced vibration. Up to date applications of propeller skew does not has a specified criteria for any turbulent model. This paper deals with the model which explains the effect of propeller skewness on hydrodynamic performance related to study of turbulent model via mathematical and numerical modeling. The simulation work is carried out using ANSYS-FLUENT software.


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


2021 ◽  
Author(s):  
Shuojun Mei ◽  
Chao Yuan ◽  
Wenhui He ◽  
Tanya Talwar

<p>Densely packed urban buildings trap outgoing long-wave radiation, leading to reduced surface cooling and increased building surface temperature. In calm conditions, poor natural ventilation causes both thermal comfort and air quality issue. The buoyancy flow generated by heated urban surfaces is the main driving of the urban flow and pollutant dispersion. A 3D numerical modelling is conducted to investigate the thermal plumes merging and buoyancy-driven airflow in urban areas. The performances of four different turbulence models, i.e., two URANS (Unsteady Reynolds-averaged Navier–Stokes equations) models and two LES (Large-Eddy Simulation) models are evaluated by comparing the velocity field with previous water tank measurements. Validation results show that all four turbulence models can capture the bending of thermal plumes toward the centre, and LES models provide a better prediction on the vertical velocity profiles, while both URANS models show underestimation. The plume merging mechanism is analysed with the high accuracy LES results. Both pressure difference and swaying motion caused by mean flow and turbulence are important for plume merging. The turbulence coherent structure of plume merging is analysed by a quadrant analysis, which shows ejection and sweep events could significantly change with the building density. A case study with complex urban geometry is conducted to show the impact of thermal plumes merging in the real high-density urban areas. The convergence airflow at the pedestrian level is estimated to 2 m/s under a surface-air temperature difference of 5 °C, which is comparable to wind-driven ventilation and beneficial to thermal comfort and air quality.</p>


2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


Sign in / Sign up

Export Citation Format

Share Document