Comparative Analysis of Microturbines Performance Deterioration and Diagnostics

Author(s):  
E. E. B. Gomes ◽  
D. McCaffrey ◽  
M. J. M. Garces ◽  
A. L. Polizakis ◽  
P. Pilidis

The interest in microturbines and new distributed generation technologies is growing in the entire world because of the many potentially beneficial characteristics they can offer and the developments achieved so far. This paper investigates the performance and degradation effects of microturbines for electric power generation. Diagnostics investigation is also carried out to obtain optimal instrumentation sets for degradation faults. Here the capacity of the gas turbines analyzed is 29kW simple and regenerative cycles. The engine performance is also analyzed operating at constant and variable speed. To simulate the gas turbine performance and carry out the diagnostic analysis the software Pythia and Turbomatch, developed by Cranfield University, were used. In this paper the engines above are simulated at degraded conditions. The effects of the degradation in the compressor, turbine and recuperator on the performance of the engines were investigated. Despite of the improvement on performance achieved with regenerative cycle and variable speed operation the results show that the performance of variable speed microturbines is more sensitive to components degradation than constant speed engines. Also recuperator degradation has greater effect on variable speed than constant speed engines. Due the effects of degradation on each engine different diagnostic approaches are observed.

Author(s):  
Mauro Venturini ◽  
Nicola Puggina

The performance of gas turbines degrades over time and, as a consequence, a decrease in gas turbine performance parameters also occurs, so that they may fall below a given threshold value. Therefore, corrective maintenance actions are required to bring the system back to an acceptable operating condition. In today’s competitive market, the prognosis of the time evolution of system performance is also recommended, in such a manner as to take appropriate action before any serious malfunctioning has occurred and, as a consequence, to improve system reliability and availability. Successful prognostics should be as accurate as possible, because false alarms cause unnecessary maintenance and nonprofitable stops. For these reasons, a prognostic methodology, developed by the authors, is applied in this paper to assess its prediction reliability for several degradation scenarios typical of gas turbine performance deterioration. The methodology makes use of the Monte Carlo statistical method to provide, on the basis of the recordings of past behavior, a prediction of future availability, i.e., the probability that the considered machine or component can be found in the operational state at a given time in the future. The analyses carried out in this paper aim to assess the influence of the degradation scenario on methodology prediction reliability, as a function of a user-defined threshold and minimum value allowed for the parameter under consideration. A technique is also presented and discussed, in order to improve methodology prediction reliability by means a correction factor applied to the time points used for methodology calibration. The results presented in this paper show that, for all the considered degradation scenarios, the prediction error is lower than 4% (in most cases, it is even lower than 2%), if the availability is estimated for the next trend, while it is not higher than 12%, if the availability is estimated five trends ahead. The application of a proper correction factor allows the prediction errors after five trends to be reduced to approximately 5%.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Felix Döring ◽  
Stephan Staudacher ◽  
Christian Koch ◽  
Matthias Weißschuh

Airborne particles ingested in aircraft engines deposit on compressor blading and end walls. Aerodynamic surfaces degrade on a microscopic and macroscopic scale. Blade row, compressor, and engine performance deteriorate. Optimization of maintenance scheduling to mitigate these effects requires modeling of the deterioration process. This work provides a deterioration model on blade row level and the experimental validation of this model in a newly designed deposition test rig. When reviewing previously published work, a clear focus on deposition effects in industrial gas turbines becomes evident. The present work focuses on quantifying magnitudes and timescales of deposition effects in aircraft engines and the adaptation of the generalized Kern and Seaton deposition model for application in axial compressor blade rows. The test rig's cascade was designed to be representative of aircraft engine compressor blading. The cascade was exposed to an accelerated deposition process. Reproducible deposition patterns were identified. Results showed an asymptotic progression of blade row performance deterioration. A significant increase in total pressure loss and decrease in static pressure rise were measured. Application of the validated model using existing particle concentration and flight cycle data showed that more than 95% of the performance deterioration due to deposition occurs within the first 1000 flight cycles.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Uyioghosa Igie ◽  
Pericles Pilidis ◽  
Dimitrios Fouflias ◽  
Kenneth Ramsden ◽  
Panagiotis Laskaridis

Industrial gas turbines are susceptible to compressor fouling, which is the deposition and accretion of airborne particles or contaminants on the compressor blades. This paper demonstrates the blade aerodynamic effects of fouling through experimental compressor cascade tests and the accompanied engine performance degradation using turbomatch, an in-house gas turbine performance software. Similarly, on-line compressor washing is implemented taking into account typical operating conditions comparable with industry high pressure washing. The fouling study shows the changes in the individual stage maps of the compressor in this condition, the impact of degradation during part-load, influence of control variables, and the identification of key parameters to ascertain fouling levels. Applying demineralized water for 10 min, with a liquid-to-air ratio of 0.2%, the aerodynamic performance of the blade is shown to improve, however most of the cleaning effect occurred in the first 5 min. The most effectively washed part of the blade was the pressure side, in which most of the particles deposited during the accelerated fouling. The simulation of fouled and washed engine conditions indicates 30% recovery of the lost power due to washing.


1992 ◽  
Vol 114 (2) ◽  
pp. 161-168 ◽  
Author(s):  
I. S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Ihor S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Luca Bozzi ◽  
Enrico D’angelo

High turn-down operating of heavy-duty gas turbines in modern Combined Cycle Plants requires a highly efficient secondary air system to ensure the proper supply of cooling and sealing air. Thus, accurate performance prediction of secondary flows in the complete range of operating conditions is crucial. The paper gives an overview of the secondary air system of Ansaldo F-class AEx4.3A gas turbines. Focus of the work is a procedure to calculate the cooling flows, which allows investigating both the interaction between cooled rows and additional secondary flows (sealing and leakage air) and the influence on gas turbine performance. The procedure is based on a fluid-network solver modelling the engine secondary air system. Parametric curves implemented into the network model give the consumption of cooling air of blades and vanes. Performances of blade cooling systems based on different cooling technology are presented. Variations of secondary air flows in function of load and/or ambient conditions are discussed and justified. The effect of secondary air reduction is investigated in details showing the relationship between the position, along the gas path, of the upgrade and the increasing of engine performance. In particular, a section of the paper describes the application of a consistent and straightforward technique, based on an exergy analysis, to estimate the effect of major modifications to the air system on overall engine performance. A set of models for the different factors of cooling loss is presented and sample calculations are used to illustrate the splitting and magnitude of losses. Field data, referred to AE64.3A gas turbine, are used to calibrate the correlation method and to enhance the structure of the lumped-parameters network models.


Author(s):  
Elisabet Syverud ◽  
Olaf Brekke ◽  
Lars E. Bakken

Gas turbine performance deterioration can be a major economic factor. An example is within offshore installations where a degradation of gas turbine performance can mean a reduction of oil and gas production. This paper describes the test results from a series of accelerated deterioration tests on a GE J85-13 jet engine. The axial compressor was deteriorated by spraying atomized droplets of saltwater into the engine intake. The paper also presents the overall engine performance deterioration as well as deteriorated stage characteristics. The results of laboratory analysis of the salt deposits are presented, providing insight into the increased surface roughness and the deposit thickness and distribution. The test data show good agreement with published stage characteristics and give valuable information regarding stage-by-stage performance deterioration.


1994 ◽  
Vol 116 (1) ◽  
pp. 46-52 ◽  
Author(s):  
A. N. Lakshminarasimha ◽  
M. P. Boyce ◽  
C. B. Meher-Homji

The effects of performance deterioration in both land and aircraft gas turbines are presented in this paper. Models for two of the most common causes of deterioration, viz., fouling and erosion, are presented. A stage-stacking procedure, which uses new installed engine field data for compressor map development, is described. The results of the effect of fouling in a powerplant gas turbine and that of erosion in a aircraft gas turbine are presented. Also described are methods of fault threshold quantification and fault matrix simulation. Results of the analyses were found to be consistent with field observations.


Author(s):  
K. Mathioudakis ◽  
A. Stamatis ◽  
A. Tsalavoutas ◽  
N. Aretakis

The paper discusses how the principles employed for monitoring the performance of gas turbines in industrial duty can be explained by using suitable Gas Turbine performance models. A particular performance model that can be used for educational purposes is presented. The model allows the presentation of basic rules of gas turbine engine behavior and helps understanding different aspects of its operation. It is equipped with a graphics interface, so it can present engine operating point data in a number of different ways: operating line, operating points of the components, variation of particular quantities with operating conditions etc. Its novel feature, compared to existing simulation programs, is that it can be used for studying cases of faulty engine operation. Faults can be implanted into different engine components and their impact on engine performance studied. The notion of fault signatures on measured quantities is clearly demonstrated. On the other hand, the model has a diagnostic capability, allowing the introduction of measurement data from faulty engines and providing a diagnosis, namely a picture of how the performance of engine components has deviated from nominal condition, and how this information gives the possibility for fault identification.


Author(s):  
A. N. Lakshminarasimha ◽  
M. P. Boyce ◽  
C. B. Meher-Homji

The effects of performance deterioration in both land and aircraft gas turbines are presented in this paper. Models for two of the most common causes of deterioration viz. fouling and deterioration are presented. A stage stacking procedure which uses new installed engine field data for compressor map development is described. The results of the effect of fouling in a powerplant gas turbine and that of erosion in a aircraft gas turbine are presented. Also described are methods of fault threshold quantification and fault matrix simulation. Results of the analyses were found to be consistent with field observations.


Sign in / Sign up

Export Citation Format

Share Document