Improving Accuracy and Comparability of Turbocharger Performance Measurements

Author(s):  
Mario Schinnerl ◽  
Mathias Bogner ◽  
Jan Ehrhard

Abstract The reduction of fuel consumption and emissions is the most dominant challenge in powertrain development. Therefore, engine and turbocharger have to be matched with high accuracy to achieve optimum powertrain efficiencies. With respect to relevant engine operating points, compressor maps can be measured in full operating range on a standard hot gas test bench. Even though there is no need for extrapolation of the operating range, they have to be corrected for the impact of heat transfer to represent the adiabatic performance of the compressor stage. The common approach to evaluate the turbine efficiency is to apply the energy balance of the entire turbocharger where the turbine power is the sum of the compressor power and the friction losses of the radial and axial journal bearings. The adiabatic compressor power in combination with the calculation of the friction losses by using validated run-up simulations enables the evaluation of the isentropic turbine efficiency and the comparability to CFD simulations of the turbine stage. For reasons of comparability to CFD simulations, which can predict a wide operating range of the turbine stage, the limited measureable turbine operating range is enhanced by a so-called compressor closed loop unit (CCLU). This additional test device enables to vary the demand of compressor power for the same operating points as in the standard mapping and therefore to enlarge the measureable turbine operating range. In combination with proper extrapolation methods, the isentropic turbine efficiency can now be compared to CFD simulations.

Author(s):  
Chia Hui Lim ◽  
Graham Pullan ◽  
John Northall

A methodology is presented to allow designers to estimate the penalty for turbine efficiency associated with film cooling. The approach is based on the control volume analysis of Hartsel and the entropy-based formulations of Young and Wilcock. The present work extends these techniques to include flow ejected at compound angles and uses three-dimensional CFD to provide the mainstream flow properties. The method allows the loss contribution from each hole to be identified separately. The proposed method is applied to an aeroengine high-pressure turbine stage. It is found that, if the efficiency definition includes all irreversibilities, the penalty associated with film cooling would be 8.0%. However, if the pragmatic approach is adopted whereby the unavoidable entropy generated due to the equilibration of coolant and mainstream static temperatures is ignored, the efficiency penalty is 0.7%. Finally, a series of case studies is used to quantify the impact of changes to the local mainstream flow direction and coolant ejection angle on the predicted turbine efficiency. It is shown, quantitatively, that reducing the angle between the directions of the coolant and mainstream flows offers the greatest potential for the designer to improve film cooled turbine efficiency.


Author(s):  
R. C. Keogh ◽  
G. R. Guenette ◽  
T. P. Sommer

This paper describes the implementation and results of an experiment to measure the isentropic efficiency of a fully scaled transonic turbine stage in a short-duration blowdown type facility. Short duration test facilities offer the potential for low cost, high accuracy testing of turbomachinery components under fully scaled conditions. The method developed employs the ‘brake’ approach for turbine efficiency measurement. This paper describes newly developed techniques to measure the turbine torque and mass flow in this type of facility. The isentropic efficiency was measured over a test window of 400 to 500 milliseconds. The estimated measurement uncertainty (U95) is 0.45% for absolute measurements, and 0.25% for relative measurements. Corrected mass flow and isentropic efficiency measurements are presented for a range of corrected speed (97–112%) and compared with CFD predictions. Close agreement was observed both in overall magnitudes and trends between the measured data and predictions.


Author(s):  
C. Brüggemann ◽  
M. Schatz ◽  
D. M. Vogt ◽  
F. Popig

Abstract This study presents the results of measurements in an industrial steam turbine test rig operated at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) in Stuttgart, Germany. In order to ensure safe operation over a wide range of operating conditions the last and penultimate rotor blade rows of this turbine feature Part-Span Connectors (PSC). The PSC provide additional coupling and mechanical damping during operation, however, they present a major obstacle to the flow, thus causing additional aerodynamic loss. The focus of the present work is on the aerodynamic impact of the PSC on the flow field of the last stage. To capture this impact, an extensive measurement campaign over a wide range of operating points was performed using two last blade row configurations that are identical with regard to the blade design, except for the fact that one features free-standing blades while the second is equipped with PSC. A performance assessment of these two configurations based on detailed probe measurements and overall turbine efficiency is presented. Additionally, a detailed comparison of 3D CFD-results employing an equilibrium steam (EQS) model and a non-equilibrium steam (NES) model for both configurations is shown with good agreement to the test data. However, comparing the two models reveals major differences whenever there is condensation occurring close to the evaluation plane, thus the advantage of applying the NES model is presented.


Author(s):  
K. Lu ◽  
M. Rezasoltani ◽  
M. T. Schobeiri ◽  
J. C. Han

Applying a new non-axisymmetric endwall contouring technology introduced by Turbomachinery Performance and Flow Research Laboratory (TPFL) at Texas A&M University to the second rotor row of a three-stage research turbine, has shown that for a single rotor row a major turbine efficiency improvement can be achieved [1]. Motivated by these results, comprehensive numerical and experimental investigations on the TPFL research turbine were conducted to determine the impact of the endwall contouring on film cooling effectiveness. For this investigation, the first rotor row directly subjected to the purge flow injection was chosen to which the new contouring technology was applied. Performing an extensive RANS simulation by using the boundary conditions from the experiments, aerodynamics, performance and film cooling effectiveness studies were performed by varying the injection blowing ratio and turbine rotational speed. Performance measurements were carried out within a rotational speed range of 1800 to 3000 RPM. The corresponding CFD simulations were carried out for four rotational speeds, 2000, 2400, 2600, and 3000 rpm. Comparison of the RANS aerodynamics simulation with experiments reveals noticeable differences. Considering the film cooling effectiveness, major differences between experiment and numerical results were observed and discussed in the paper.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Chia Hui Lim ◽  
Graham Pullan ◽  
John Northall

A methodology is presented to allow designers to estimate the penalty for turbine efficiency associated with film cooling. The approach is based on the control volume analysis of Hartsel and the entropy-based formulations of Young and Wilcock. The present work extends these techniques to include flow ejected at compound angles and uses three-dimensional computational fluid dynamics (CFD) to provide the mainstream flow properties. The method allows the loss contribution from each hole to be identified separately. The proposed method is applied to an aeroengine high-pressure turbine stage. It is found that, if the efficiency definition includes all irreversibilities, the penalty associated with film cooling would be 8.0%. However, if the pragmatic approach is adopted whereby the unavoidable entropy generated due to the equilibration of coolant and mainstream static temperatures is ignored, the efficiency penalty is 0.7%. Finally, a series of case studies is used to quantify the impact of changes to the local mainstream flow direction and coolant ejection angle on the predicted turbine efficiency. It is shown, quantitatively, that reducing the angle between the directions of the coolant and mainstream flows offers the greatest potential for the designer to improve film-cooled turbine efficiency.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


Author(s):  
Elias Chebli ◽  
Michael Casey ◽  
Markus Mu¨ller ◽  
Siegfried Sumser ◽  
Gernot Hertweck ◽  
...  

New concepts for the optimisation of supercharging systems have been analysed to improve fuel consumption, emissions and transient diesel engine response. In addition to the conventional VTG (Variable Turbine Geometry) where the variability takes place upstream of the turbine impeller, a new innovative variable turbine geometry called VOT (Variable Outlet Turbine) is investigated in this paper where the variability takes place at impeller exit. The flow variability is achieved by variation of the flow cross-section at the turbine outlet using an axial displacement of a sliding sleeve over the exducer and provides a simple solution for flow variability. The flow field of the VOT is calculated by means of steady state 3D-CFD simulations to predict the aerodynamic performance as well as to analyse the loss mechanisms. The VOT design is optimised by finding a good balance between clearance and outlet losses to improve the turbine efficiency. Furthermore, experimental results of the VOT are presented and compared to a turbine equipped with a waste gate (WG) that verify the efficiency advantage of the VOT. In general, it is found that the use of the VOT at high specific speed is important to reduce the outlet losses and to improve the turbine efficiency over a wide operating range.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


Sign in / Sign up

Export Citation Format

Share Document