Numerical Simulation of Non-Equilibrium Condensation in Supercritical CO2 Compressors

Author(s):  
Kevin W. Brinckman ◽  
Ashvin Hosangadi ◽  
Zisen Liu ◽  
Timothy Weathers

Abstract There is increasing interest in supercritical CO2 processes, such as Carbon Capture and Storage, and electric power production, which require compressors to pressurize CO2 above the critical point. For supercritical compressor operation close to the critical point there is a concern that the working fluid could cross into the subcritical regime which could lead to issues with compressor performance if condensation was to occur in regions where the fluid dropped below the saturation point. Presently, the question of whether there is sufficient residence time at subcritical conditions for condensation onset in supercritical CO2 compressors is an unresolved issue. A methodology is presented towards providing a validated simulation capability for predicting condensation in supercritical CO2 compressors. The modeling framework involves the solution of a discrete droplet phase coupled to the continuum gas phase to track droplet nucleation and growth. The model is implemented in the CRUNCH CFD® Computational Fluid Dynamics code that has been extensively validated for simulation at near critical conditions with a real fluid framework for accurate predictions of trans-critical CO2 processes. Results of predictions using classical nucleation theory to model homogeneous nucleation of condensation sites in supersaturated vapor regions are presented. A non-equilibrium phase-change model is applied to predict condensation on the nuclei which grow in a dispersed-phase droplet framework. Model validation is provided against experimental data for condensation of supercritical CO2 in a De Laval nozzle including the Wilson line location. The model is then applied for prediction of condensation in the compressor of the Sandia test loop at mildly supercritical inlet conditions. The results suggest that there is sufficient residence time at the conditions analyzed to form localized nucleation sites, however, droplets are expected to be short lived as the model predicts they will rapidly vaporize.

1997 ◽  
Vol 348 ◽  
pp. 1-28 ◽  
Author(s):  
STEPHAN ADAM ◽  
GÜNTER H. SCHNERR

New instabilites of unsteady transonic flows with non-equilibrium phase transition are presented including unsymmetric flow patterns with moving oblique shock systems in supersonic nozzles with perfectly symmetric shapes. The phenomena were first detected when performing experiments in our supersonic wind tunnel with atmospheric supply and could be perfectly reproduced by numerical simulations based on the Euler equations, i.e. neglecting the viscosity of the fluid. The formation of the liquid phase is modelled using the classical nucleation theory for the steady state together with the Hertz–Knudsen droplet growth law and yields qualitatively and quantitatively excellent agreement with experiments in the unsteady flow regime with high-frequency oscillations including the unstable transient change of the structure from symmetric to unsymmetric flow.For engineering applications the sudden increase or decrease of the frequency by a factor 2 or more and of the pressure amplitude at the bifurcation limits is of immediate practical interest, e.g. for flutter excitation of turbomachinery blading.


2021 ◽  
Author(s):  
Geng Teng ◽  
Laijie Chen ◽  
Xin Shen ◽  
Hua Ouyang ◽  
Yubo Zhu ◽  
...  

Abstract The centrifugal compressor is the core component of the supercritical carbon dioxide (SCO2) power cycle. It is essential to carry out component-level experimental research on it and test the working characteristics of the compressor and its auxiliary equipment. Building an accurate closed-loop simulation model of closed SCO2 compression loop is a necessary preparation for selecting loop key parameters and establishing system control strategy, which is also an important prerequisite for the stable operation of compressor under test parameters. In this paper, the thermodynamic model of compressor, pre-cooler, orifice plate and other components in supercritical CO2 compression test system is studied, and the simulation model of compression test system is established. Moreover, based on the system enthalpy equations and physical property model of real gas, the compressor, pre-cooler and other components in the test loop are preliminarily designed by using the thermodynamic model of components. Since the operating conditions are in the vicinity of the critical point, when the operating conditions change slightly, the physical properties of the working fluid will change significantly, which might have a greater impact on the operating performance of the system. So the operating performance and the parameter changes of key nodes in the test loop under different operating conditions are calculated, which will provide theoretical guidance for the construction of subsequent experimental loops.


Author(s):  
Yongju Jeong ◽  
Seongmin Son ◽  
Seong kuk Cho ◽  
Seungjoon Baik ◽  
Jeong Ik Lee

Abstract Most of the power plants operating nowadays mainly have adopted a steam Rankine cycle or a gas Brayton cycle. To devise a better power conversion cycle, various approaches were taken by researchers and one of the examples is an S-CO2 (supercritical CO2) power cycle. Over the past decades, the S-CO2 power cycle was invented and studied. Eventually the cycle was successful for attracting attentions from a wide range of applications. Basically, an S-CO2 power cycle is a variation of a gas Brayton cycle. In contrast to the fact that an ordinary Brayton cycle operates with a gas phase fluid, the S-CO2 power cycle operates with a supercritical phase fluid, where temperatures and pressures of working fluid are above the critical point. Many advantages of S-CO2 power cycle are rooted from its novel characteristics. Particularly, a compressor in an S-CO2 power cycle operates near the critical point, where the compressibility is greatly reduced. Since the S-CO2 power cycle greatly benefits from the reduced compression work, an S-CO2 compressor prediction under off-design condition has a huge impact on overall cycle performance. When off-design operations of a power cycle are considered, the compressor performance needs to be specified. One of the approaches for a compressor off-design performance evaluation is to use the correction methods based on similitude analysis. However, there are several approaches for deriving the equivalent conditions but none of the approaches has been thoroughly examined for S-CO2 conditions based on data. The purpose of this paper is comparing these correction models to identify the best fitted approach, in order to predict a compressor off-design operation performance more accurately from limited amount of information. Each correction method was applied to two sets of data, SCEIL experiment data and 1D turbomachinery code off-design prediction code generated data, and evaluated in this paper.


Author(s):  
Braden Twomey ◽  
Andras Nagy ◽  
Hugh Russell ◽  
Andrew Rowlands ◽  
Jason Czapla ◽  
...  

The use of organic refrigerants or supercritical CO2 (sCO2) as a working fluid in closed loop power cycles has the potential to revolutionise power generation. Thermodynamic cycle efficiency can be improved by selecting bespoke working fluids that best suit a given combination of heat source and heat sink temperatures, but thermal efficiency can be maximised by pairing this with a custom made turbine. This work describes the development and design of a new 100kW thermal laboratory-scale test loop at the University of Queensland. The loop has capabilities for characterising both simple and recuperated refrigerant and sCO2 organic Rankine cycles in relation to overall cycle performance and for the experimental characterisation of radial inflow turbines. The aim of this facility is to generate high quality validation data and to gain new insight into overall loop performance, control operation, and loss mechanisms that prevail in all loop components, including radial turbines when operating with supercritical fluids. The paper describes the current test loop and provides details on the available test modes: an organic Rankine cycle mode, a closed loop Brayton cycle mode, and heat exchanger test mode and their respective operating ranges. The bespoke control and data acquisition system has been designed to ensure safe loop operation and shut down and to provide high quality measurement of signals from more than 60 sensors within the loop and test turbine. For each measurement, details of the uncertainty quantification in accordance with ASME standards are provided, ensuring data quality. Data from the commissioning of the facility is provided in this paper. This data confirms controlled operation of the loop and the ability to conduct both cycle characterisation tests and turbomachinery tests.


Author(s):  
Alireza Ameli ◽  
Teemu Turunen-Saaresti ◽  
Jari Backman

Centrifugal compressors are one of the best choices among compressors in supercritical Brayton cycles. A supercritical CO2 centrifugal compressor increases the pressure of the fluid which state is initially very close to the critical point. When the supercritical fluid is compressed near the critical point, wide variations of fluid properties occur. The density of carbon dioxide at its critical point is close to the liquid density which leads to reduction in the compression work. This paper explains a method to overcome the simulation instabilities and challenges near the critical point in which the thermophysical properties change sharply. The investigated compressor is a centrifugal compressor tested in the Sandia supercritical CO2 test loop. In order to get results with the high accuracy and take into account the nonlinear variation of the properties near the critical point, the computational fluid dynamics (CFD) flow solver is coupled with a look-up table of properties of fluid. Behavior of real gas close to its critical point and the effect of the accuracy of the real gas model on the compressor performance are studied in this paper, and the results are compared with the experimental data from the Sandia compression facility.


Author(s):  
Thomas Conboy ◽  
Steven Wright ◽  
James Pasch ◽  
Darryn Fleming ◽  
Gary Rochau ◽  
...  

Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction [1,2,3,4]. Sandia National Labs (Albuquerque, NM, US) and the US Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. [5] (Arvada, CO, US). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation — according to models, as much as 80 kWe per generator depending on loop configuration — and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650°F/615K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20kWe). Operation at higher speeds, flow rates, pressures and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached.


2018 ◽  
Author(s):  
Wenhao Sun ◽  
Daniil A. Kitchaev ◽  
Denis Kramer ◽  
Gerbrand Ceder

<p>Aqueous precipitation of transition metal oxides often proceeds through non-equilibrium phases, whose appearance cannot be anticipated from traditional phase diagrams. Without a precise understanding of which metastable phases form, or their lifetimes, targeted synthesis of specific metal oxides can become a trial-and-error process. Here, we derive a new thermodynamic potential for the free-energy of a metal oxide in water, which reveals a hidden metastable energy landscape above the equilibrium Pourbaix diagram. By combining this ‘Pourbaix potential’ with classical nucleation theory, we interrogate how solution conditions can influence the multistage oxidation pathways of manganese oxides. We calculate that even within the same phase stability region of a Pourbaix diagram, subtle variations in <i>p</i>H and redox potential can redirect a crystallization pathway through different metastable phases. Our theoretical framework offers a predictive platform to navigate through the thermodynamic and kinetic energy landscape towards the rational synthesis of target metal oxide phases.</p>


Author(s):  
Rene Pecnik ◽  
Enrico Rinaldi ◽  
Piero Colonna

The merit of using supercritical CO2 (scCO2) as the working fluid of a closed Brayton cycle gas turbine is now widely recognized, and the development of this technology is now actively pursued. scCO2 gas turbine power plants are an attractive option for solar, geothermal and nuclear energy conversion. Among the challenges which must be overcome in order to successfully bring the technology to the market, the efficiency of the compressor and turbine operating with the supercritical fluid should be increased as much as possible. High efficiency can be reached by means of sophisticated aerodynamic design, which, compared to other overall efficiency improvements, like cycle maximum pressure and temperature increase, or increase of recuperator effectiveness, does not require an increase in equipment cost, but only an additional effort in research and development. This paper reports a three-dimensional CFD study of a high-speed centrifugal compressor operating with CO2 in the thermodynamic region slightly above the vapor-liquid critical point. The investigated geometry is the compressor impeller tested in the Sandia scCO2 compression loop facility [1]. The fluid dynamic simulations are performed with a fully implicit parallel Reynolds-averaged Navier-Stokes code based on a finite volume formulation on arbitrary polyhedral mesh elements. The CFD code has been validated on test cases which are relevant for this study, see Ref. [2,3]. In order to account for the strongly nonlinear variation of the thermophysical properties of supercritical CO2, the CFD code is coupled with an extensive library for the computation of properties of fluids and mixtures [4]. Among the available models, the one based on reference equations of state for CO2 [5,6] has been selected, as implemented in one of the sub-libraries [7]. A specialized look-up table approach and a meshing technique suited for turbomachinery geometries are also among the novelties introduced in the developed methodology. A detailed evaluation of the CFD results highlights the challenges of numerical studies aimed at the simulation of technically relevant compressible flows occurring close to the liquid-vapor critical point. The data of the obtained flow field are used for a comparison with experiments performed at the Sandia scCO2 compression-loop facility.


Author(s):  
Takao Ishizuka ◽  
Yasushi Muto ◽  
Masanori Aritomi

Supercritical carbon dioxide (CO2) gas turbine systems can generate power at a high cycle thermal efficiency, even at modest temperatures of 500–550°C. That high thermal efficiency is attributed to a markedly reduced compressor work in the vicinity of critical point. In addition, the reaction between sodium (Na) and CO2 is milder than that between H2O and Na. Consequently, a more reliable and economically advantageous power generation system can be created by coupling with a Na-cooled fast breeder reactor. In a supercritical CO2 turbine system, a partial cooling cycle is employed to compensate a difference in heat capacity for the high-temperature — low-pressure side and low-temperature — high-pressure side of the recuperators to achieve high cycle thermal efficiency. In our previous work, a conceptual design of the system was produced for conditions of reactor thermal power of 600 MW, turbine inlet condition of 20 MPa/527°C, recuperators 1 and 2 effectiveness of 98%/95%, Intermediate Heat Exchanger (IHX) pressure loss of 8.65%, a turbine adiabatic efficiency of 93%, and a compressor adiabatic efficiency of 88%. Results revealed that high cycle thermal efficiency of 43% can be achieved. In this cycle, three different compressors, i.e., a low-pressure compressor, a high-pressure compressor, and a bypass compressor are included. In the compressor regime, the values of properties such as specific heat and density vary sharply and nonlinearly, dependent upon the pressure and temperature. Therefore, the influences of such property changes on compressor design should be clarified. To obtain experimental data for the compressor performance in the field near the critical point, a supercritical CO2 compressor test project was started at the Tokyo Institute of Technology on June 2007 with funding from MEXT, Japan. In this project, a small centrifugal CO2 compressor will be fabricated and tested. During fiscal year (FY) 2007, test loop components will be fabricated. During FY 2008, the test compressor will be fabricated and installed into the test loop. In FY 2009, tests will be conducted. This paper introduces the concept of a test loop and component designs for the cooler, heater, and control valves. A computer simulation program of static operation was developed based on detailed designs of components and a preliminary design of the compressor. The test operation regime is drawn for the test parameters.


Sign in / Sign up

Export Citation Format

Share Document