Advanced Exergy Analysis of the Supercritical Carbon Dioxide Power Cycle for Waste Heat Recovery of Gas Turbine

2021 ◽  
Author(s):  
Bo Li ◽  
Shun-sen Wang ◽  
Liming Song

Abstract In this paper, the supercritical carbon dioxide power cycle used to recover the waste heat of gas turbine is investigated by means of conventional exergy analysis and advanced exergy analysis. Firstly, the thermodynamic parameters of carbon dioxide cycle in design stage are determined by single-objective optimization with net power output as objective function. Then, conventional exergy analysis is carried out on the partial heating cycle under real, unavoidable and ideal conditions. After that, advanced exergy analysis, in which the exergy destruction is divided into endogenous / exogenous part and avoidable / unavoidable part is adopted to reveal the improvement potential of the system and illustrate the interaction among the components. According to the calculation results, a total amount of 3.55MW (47.33%) exergy destruction could be reduced by the improvement of component efficiency. Endogenous exergy destruction is higher than exogenous exergy destruction in all components. Based on the results of conventional exergy analysis, the high-temperature heater should be paid attention in order to reduce exergy destruction. However, according to the results of advanced exergy analysis, the technical improvement of turbine should be emphasized due to its high endogenous-avoidable exergy destruction. Meanwhile, for the components with high unavoidable exergy destruction, external systems should be employed to exploit the underutilized energy and enhance the system performance.

Author(s):  
Junhyun Cho ◽  
Hyungki Shin ◽  
Ho-Sang Ra ◽  
Gilbong Lee ◽  
Chulwoo Roh ◽  
...  

Three supercritical carbon dioxide (CO2) power cycle experimental loops have been developed in Korea Institute of Energy Research (KIER) from 2013. As the first step, a 10 kWe-class simple un-recuperated Brayton power cycle experimental loop was designed and manufactured to test its feasibility. A 12.6 kWe hermetic turbine-alternator-compressor (TAC) unit which is composed of a centrifugal compressor, a radial turbine and the gas foil bearings was manufactured. The turbine inlet design temperature and pressure were 180 °C and 130 bar, respectively. Preliminary operation was successful at 30,000 RPM which all states of the cycle existed in the supercritical region. Second, a multi-purpose 1 kW-class test loop which operates as a transcritical cycle at a temperature of 200 °C was developed to concentrate on the characteristics of the cycle, control and stability issues of the cycle. A high-speed turbo-generator was developed which is composed of a radial turbine with a partial admission nozzle and the commercial oil-lubricated angular contact ball bearings. Finally, a 60 kWe-class Brayton cycle is being developed which is composed of two turbines and one compressor to utilize flue-gas waste heat. As the first phase of development, a turbo-generator which is composed of an axial turbine, a mechanical seal and the oil-lubricated tilting-pad bearings was designed and manufactured.


Sign in / Sign up

Export Citation Format

Share Document