Nucleation and Growth of Bubble With the Effects of Solute Gas

Volume 3 ◽  
2004 ◽  
Author(s):  
Shin-Ichi Tsuda ◽  
Shu Takagi ◽  
Yoichiro Matsumoto

Bubble nucleation and growth of formed nuclei are investigated by molecular dynamics simulation in Lennard-Jones liquid with gas impurities. For the onset of nucleation from bulk, it has been found that a dissolved gas whose interaction is very weak and whose diameter is larger than that of solvent molecules makes the action to cause composition fluctuation or local phase separation so strong that the nucleation probability predicted from pressure change becomes qualitatively wrong. It has been confirmed that this wrong prediction is generally explained by introducing the superheat ratio nondimensionalized by saturation pressure and spinodal pressure. For the growth stage of formed bubble nuclei, it is observed that the coalescence of nuclei occurs when a weak-interaction gas is dissolved at a high concentration while the competition between neighbor nuclei is dominant in the case of pure liquid.

2015 ◽  
Vol 773-774 ◽  
pp. 304-308 ◽  
Author(s):  
Zhen Hong Ban ◽  
Kok Keong Lau ◽  
Mohd Sharif Azmi

Computational modelling of dissolved gas bubble formation and growth in supersaturated solution is essential for various engineering applications, including flash vaporisation of petroleum crude oil. The common mathematical modelling of bubbly flow only caters for single liquid and its vapour, which is known as cavitation. This work aims to simulate the bubble nucleation and growth of dissolved CO2 in water across a cavitating nozzle. The dynamics of bubble nucleation and growth phenomenon will be predicted based on the hydrodynamics in the computational domain. The complex interrelated bubble dynamics, mass transfer and hydrodynamics was coupled by using Computational Fluid Dynamics (CFD) and bubble nucleation and growth model. Generally, the bubbles nucleate at the throat of the nozzle and grow along with the flow. Therefore, only the region after the throat of the nozzle has bubbles. This approach is expected to be useful for various types of bubbly flow modelling in supersaturated condition.


2009 ◽  
Vol 46 (11) ◽  
pp. 1267-1276 ◽  
Author(s):  
A. Amaratunga ◽  
J. L.H. Grozic

Soils that contain large amounts of dissolved gas within the pore fluid are called gassy soils. Gassy soils are common in marine environments and it is important to further our understanding of the unloading behaviour of gassy soils because of their potential to initiate and propagate submarine slope failures. This paper focuses on the pore-pressure responses and volumetric strains of loose gassy sands under different undrained unloading stress paths in laboratory specimens. Special attention was given to the constant deviatoric stress (q-constant) undrained unloading stress path as it simulates the stress condition imposed by tidal drawdown — one of the potential triggers of landslides in gaseous marine sediments. Gas exsolution was observed when the pore pressure was reduced below the liquid gas saturation pressure. Upon further decreases in total stress, the resulting pore-pressure change was much less than the total stress change; hence, effective stress decreased rapidly and at a certain point the samples tested under the q-constant stress path collapsed. This paper has experimentally and theoretically shown that gas in free and (or) dissolved form is detrimental in undrained unloading stress paths.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Ming-Jun Liao ◽  
Li-Qiang Duan

The influence of different wettability on explosive boiling exhibits a significant distinction, where the hydrophobic surface is beneficial for bubble nucleation and the hydrophilic surface enhances the critical heat flux. Therefore, to receive a more suitable surface for the explosive boiling, in this paper a hybrid hydrophobic–hydrophilic nanostructured surface was built by the method of molecular dynamics simulation. The onset temperatures of explosive boiling with various coating thickness, pillar width, and film thicknesses were investigated. The simulation results show that the hybrid nanostructure can decrease the onset temperature compared to the pure hydrophilic surface. It is attributed to the effect of hydrophobic coating, which promotes the formation of bubbles and causes a quicker liquid film break. Furthermore, with the increase of the hydrophobic coating thickness, the onset temperature of explosive boiling decreases. This is because the process of heat transfer between the liquid film and the hybrid nanostructured surface is inevitably enhanced. In addition, the onset temperature of explosive boiling on the hybrid wetting surface decreases with the increase of pillar width and liquid film thickness.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yanpeng Zhao ◽  
Guanwen Su ◽  
Guozhao Liu ◽  
Hongyuan Wei ◽  
Leping Dang

The effects of thirteen binary solvent systems on the growth of CL-20 were studied by molecular dynamics simulation, and the effect of antisolvent properties on the solvent inhibition was systematically investigated.


Lithos ◽  
2018 ◽  
Vol 296-299 ◽  
pp. 532-546 ◽  
Author(s):  
P. Pleše ◽  
M.D. Higgins ◽  
L. Mancini ◽  
G. Lanzafame ◽  
F. Brun ◽  
...  

1992 ◽  
Vol 270 ◽  
Author(s):  
S. S. Sandhu ◽  
J. W. Hager

ABSTRACTMathematical equations have been formulated to guide an experimental effort to produce an open-celled mesophase pitch foam. The formulation provides an analytical description of homogeneous bubble nucleation and growth, diffusion of the blowing gas through the liquid to the bubble surface, and the average material thickness between bubbles. Implications of the formulation for the experimental production of mesophase pitch foam are discussed.


2012 ◽  
Vol 482-484 ◽  
pp. 1691-1694
Author(s):  
Ning He ◽  
Qiu Ju Ma ◽  
Yu Zhu Shi

It was most effective and practical that using computational fluid dynamics simulation to analyze the distribution of flow field in gob for studying optimal layout scheme of the working face ventilation system. In this paper, numerical simulation was applied for studying the migration laws and high concentration of gas gathering area of N1201 working face in Tunliu Coal Mine; the gob of robbing working surface gas migration laws and high concentration of gas gathering area was obtained; the optimum arrangement of ventilation system for the working face was given. The conclusions had a certain theoretical value and practical significance for controlling the working face gas.


2019 ◽  
Vol 123 (38) ◽  
pp. 23586-23593 ◽  
Author(s):  
Xiaolai Li ◽  
Yuliang Wang ◽  
Mikhail E. Zaytsev ◽  
Guillaume Lajoinie ◽  
Hai Le The ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document