Design Concept of Composite Module for Nuclear Power Plant Construction

Author(s):  
Taihei Yotsuya ◽  
Kouichi Murayama ◽  
Jun Miura ◽  
Akira Nakajima ◽  
Junichi Kawahata

A composite module construction method is to be examined reflecting one of the elements of construction rationalization of a future nuclear plant planned by Hitachi. This concept is based on accomplishments and many successes achieved by Hitachi through application of the modular construction method to nuclear power plant construction over 20 years. The feature of the composite module typically includes a planned civil structure, such as a wall, a floor, and a post, representing modular components. In this way, an increased level of rationalization is expected in the conventional large-scale nuclear plants. Furthermore, the concept aiming at the modularization of all the building parts comprising medium- or small-scale reactors is also to be examined. Additional aims include improved reductions in the construction duration and rationalization through use of the composite module. On the other hand, present circumstances in nuclear plant construction are very pressing because of economic pressures. With this in mind, Hitachi is pursuing additional research into the introduction of drastic construction rationalization, such as the composite module. This concept is one of the keys to successful future plant construction, faced with such a severe situation.

2015 ◽  
Vol 17 (2) ◽  
pp. 87
Author(s):  
Mochamad Nasrullah ◽  
Wiku Lulus Widodo

ABSTRAK PERHITUNGAN BIAYA OPERASI DAN PERAWATAN PLTN SKALA BESAR DAN KECIL. Biaya pembangkit PLTN terdiri dari tiga komponen, yaitu biaya investasi, bahan bakar dan operasi perawatan (O & M). Besarnya biaya O&M pada PLTN besar dan kecil tidaklah sama. Studi ini bertujuan untuk menghitung biaya O&M PLTN skala besar dan kecil dengan mempertimbangkan parameter teknis dan ekonomis yang diambil dari berbagai data sekunder dan sumber lainnya. Studi dilakukan menggunakan data dari PLTN jenis PWR dengan daya 1343 MWe untuk PLTN ukuran besar dan daya 90 MWe untuk PLTN ukuran kecil. Asumsi digunakan tingkat eskalasi sebesar 5%, faktor kapasitas 90%. Metodologi yang digunakan adalah menghitung dengan spreadsheet yang meliputi skala masing-masing komponen O&M. Hasil perhitungan menunjukkan biaya O & M jika dihitung dengan satuan juta US$/tahun, maka biaya O&M PLTN 1343 MWe sebesar 99,21 juta US$/tahun lebih mahal dari PLTN 90 MWe sebesar 45,13 juta US $/tahun. Namun jika biaya O & M PLTN 1343 MWe dihitung dengan satuan mills $/kWh, maka hasilnya  sebesar 9,37 lebih murah dibandingkan dengan PLTN 90 MWe yaitu sebesar 63,70 mills $/kWh. Hal ini berarti semakin kecil ukuran kapasitas dayanya maka biaya operasi dan perawatannya semakin mahal. Penyebab perbedaan biaya operasi dan perawatan antara PLTN skala besar dan kecil, adalah kapasitas daya, faktor kapasitas, jumlah personal yang bekerja pada biaya administrasi umum pegawai dan manajemen, operasi pembangkit tahunan, biaya tenaga kerja offsite. Kata kunci : Biaya operasi dan perawatan, PLTN, LEGECOST ABSTRACT CALCULATION OF OPERATION AND MAINTENANCE COST FOR LARGE AND SMALL SCALE NPP. The generation cost of nuclear power plant consists of three components:  investment costs, fuel cost operation and maintenance (O&M) cost. O&M costs in the large scale of NPP is different from small scale NPP. The objective of this study are to calculate the O&M cost of large NPP and small NPP by considering technical and economic parameters from secondary data and  other references. This study uses 1343 MWe PWR data for large NPP and 90 MWe PWR for small NPP. The assumptions are 5% escalation level and 90% capacity factor. The methodology for calculation using spreadsheet with scaling methods for each O&M components. The results shows that the O &M cost if calculated in units of million US$/year, the O&M cost of NPP 1343 MWe is US$million 99.21/ year which is more expensive than the O&M cost of NPP 90 Mwe which is only US$million 45.13/ year.  But if the cost of O&M 1343 MWe nuclear power plant unit is calculated in units of mills $/kWh, the result shows that the O&M cost is 9.37 mills $/kWh which is less than the 90 MWe NPP which reaches $ 63.70 mills/kWh. The conclusion is  lower NPP capacity  has higher O&M cost. Different O&M cost is caused by power capacity, capacity factor, the amount of worker on site staff, the annual net generation and the offsite technical support. Keywords: Operation and maintenance cost, NPP, LEGECOST 


Author(s):  
Tatsuya Obata ◽  
Akihito Urashima ◽  
Kiyokatsu Watanabe ◽  
Tsumoru Miyahara

Electric Power Development Co., Ltd has been constructing Ohma Nuclear Power Plant aiming to start commercial operation in Nov. 2014. Ohma Nuclear Power Plant is located in Ohma-town, Aomori Prefecture and is a landmark power plant in which Mixed Oxide fuels can be loaded in the full core of the reactor. Hitachi-GE Nuclear Energy Ltd. and Kajima JV, both have extensive experience of nuclear power plant construction, are the main contractors of this project and supply the entire engineering, manufacturing of all major components, and execute the construction and commissioning for the reactor building. Ohma-town is located at the northernmost part of Aomori Prefecture bordering Tsugaru strait, where is exposed to severe cold and constant strong wind in winter. Such severe weather conditions make the construction very hard, however, Hitachi and KAJIMA tries to complete the project on schedule and on budget applying highly reliable advanced construction technologies, such as open-top and parallel construction method, all whether construction method, and large scale modularization technology. The groundbreaking (acquisition of the first construction permission) was already completed in May 2008. Its civil work steadily progressed, and the rock inspection was completed in Oct. 2009. Base mat will be completed in July 2010, and both building work and mechanical work go into full swing after installation of RCCV lower liner module.


Author(s):  
Takashi Kamei

Even after the huge impact of Fukushima Daiichi nuclear power plant accident, Japan has to establish its energy supply system satisfying requirements of both global warming and resistibility of natural disaster. Nuclear power has a potential to reduce carbon emission but large-scale and centralized nuclear power plant may lose large volume of electricity supply at once. Small-scale nuclear power plants will bring solution in Japan. Thorium molten-salt reactor (MSR) is selected to simulate implementation capacity of small reactors in Japan. In order to use thorium as nuclear fuel, fissionable isotope is indispensable since natural thorium does not include fissile material. Japan owns plutonium in spent nuclear fuel of uranium usage. Quantitative evaluation of implementing capacity of thorium MSR in Japan by using plutonium accumulated in Japan. Implementation capacity of thorium MSR will be about 38 GWe and 11.2 GWe in the maximum and minimum cases at 2050, respectively.


Author(s):  
Xiaomeng Dong ◽  
Zhijian Zhang ◽  
Zhaofei Tian ◽  
Lei Li ◽  
Guangliang Chen

Multi-physics coupling analysis is one of the most important fields among the analysis of nuclear power plant. The basis of multi-physics coupling is the coupling between neutronics and thermal-hydraulic because it plays a decisive role in the computation of reactor power, outlet temperature of the reactor core and pressure of vessel, which determines the economy and security of the nuclear power plant. This paper develops a coupling method which uses OPENFOAM and the REMARK code. OPENFOAM is a 3-dimension CFD open-source code for thermal-hydraulic, and the REMARK code (produced by GSE Systems) is a real-time simulation multi-group core model for neutronics while it solves diffusion equations. Additionally, a coupled computation using these two codes is new and has not been done. The method is tested and verified using data of the QINSHAN Phase II typical nuclear reactor which will have 16 × 121 elements. The coupled code has been modified to adapt unlimited CPUs after parallelization. With the further development and additional testing, this coupling method has the potential to extend to a more large-scale and accurate computation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shang-Kuan Chen ◽  
Yen-Wu Ti ◽  
Kuo-Yu Tsai

In nuclear power plant construction scheduling, a project is generally defined by its dependent preparation time, the time required for construction, and its reactor installation time. The issues of multiple construction teams and multiple reactor installation teams are considered. In this paper, a hierarchical particle swarm optimization algorithm is proposed to solve the nuclear power plant construction scheduling problem and minimize the occurrence of projects failing to achieve deliverables within applicable due times and deadlines.


Author(s):  
Claude Besson ◽  
Erico Mariotti ◽  
Alexandre Mouysset ◽  
Lorenz zur Nedden ◽  
Bernard Delannay

Diamond tools are well proven cutting, drilling and grinding technologies in many applications but need to be specifically optimized and adapted for the complex and varied structures of nuclear power plant in view of decontamination and decommissioning. The proper development and use of diamond tools in these extreme and complex conditions can only be achieved thanks to the combined talent of experienced nuclear plant contractors, engineers, technicians, operators of diamond tools, and the use of specialized equipment. This present paper is an overview of the possible applications of diamond tools in the different operations of Nuclear Decommissioning and Decontamination.


Author(s):  
Kenji Akagi ◽  
Masayuki Ishiwata ◽  
Kenji Araki ◽  
Jun-Ichi Kawahata

In nuclear power plant construction, countless variety of parts, products, and jigs more than one million are treated under construction. Furthermore, strict traceability to the history of material, manufacturing, and installation is required for all products from the start to finish of the construction, which enforce much workforce and many costs at every project. In an addition, the operational efficiency improvement is absolutely essential for the effective construction to reduce the initial investment for construction. As one solution, RFID (Radio Frequent Identification) application technology, one of the fundamental technologies to realize a ubiquitous society, currently expands its functionality and general versatility at an accelerating pace in mass-production industry. Hitachi believes RFID technology can be useful of one of the key solutions for the issues in non-mass production industry as well. Under this situation, Hitachi initiated the development of next generation plant concept (ubiquitous plant construction technology) which utilizes information and RFID technologies. In this paper, our application plans of RFID technology to nuclear power is described.


Sign in / Sign up

Export Citation Format

Share Document