Transient Analysis on Helium Coolant Tube Break Accident of Dual-Functional Lithium Lead Test Blanket Module

Author(s):  
Qian Sun ◽  
Tianji Peng ◽  
Zhiwei Zhou ◽  
Zhibin Chen ◽  
Jieqiong Jiang

Dual-functional Lithium Lead Test Blanket Module (DFLL-TBM) was proposed by China for testing in the International Thermonuclear Experimental Reactor (ITER).When an in-TBM helium coolant tube breaks, high pressure helium will discharge into the Pb-Li breeding zones. The pressure shock in the TBM will threaten the structural integrity and safety of ITER. Simulation and analysis on helium coolant tube break accident of DFLL-TBM was performed, and two cases with different break sizes were considered. Computational results indicate that intense pressure waves spread quickly from the break to the surrounding structures and the variation of pressure in the TBM breeding box is drastic especially when the pressure wave propagation encounters large resistance such as at the bending corner of the flow channel, the inlet and outlet of Pb-Li, etc. The maximum pressure in the TBM breeding box which is even higher than the operating pressure of helium also occurs in these zones. Although the pressure shock lasts for a very short time, its effect on the structural integrity of DFLL-TBM needs to be paid attention to.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Norazlina Subani ◽  
Norsarahaida Amin

Water hammer on transient flow of hydrogen-natural gas mixture in a horizontal pipeline is analysed to determine the relationship between pressure waves and different modes of closing and opening of valves. Four types of laws applicable to closing valve, namely, instantaneous, linear, concave, and convex laws, are considered. These closure laws describe the speed variation of the hydrogen-natural gas mixture as the valve is closing. The numerical solution is obtained using the reduced order modelling technique. The results show that changes in the pressure wave profile and amplitude depend on the type of closing laws, valve closure times, and the number of polygonal segments in the closing function. The pressure wave profile varies from square to triangular and trapezoidal shape depending on the type of closing laws, while the amplitude of pressure waves reduces as the closing time is reduced and the numbers of polygonal segments are increased. The instantaneous and convex closing laws give rise to minimum and maximum pressure, respectively.


2019 ◽  
Vol 137 ◽  
pp. 01043
Author(s):  
Ferdinand Uilhoorn ◽  
Maciej Witek

Structural integrity and risk management have a wide interest because of its practical applications, such as oil and gas pipelines, piping systems under pressure in power stations, urban water, and heating networks. The main goal of this paper is twofold. Firstly, to estimate the unsteady pressureflow variations in a gas transmission grid within the framework of sequential data assimilation. This technique enables to determine accurately the maximum pressure at the localized defect on the pipeline by merging measurements that contain random errors into the inexact numerical flow model. For this purpose, a particle filter is used. The semi-discretization approach is applied to convert the nonisothermal flow model into an initial value problem of ordinary differential equations. The spatial discretization is based on a five-point, fourth-order finite difference approximation and the time marching was done using a diagonally implicit Runge-Kutta scheme. Secondly, to study the strength of steel tubes reinforced with composite sleeves containing localized part-wall thickness losses caused by corrosion while taking into consideration a safe operating pressure. For a steel thin-walled cylinder containing a wrap of fiberglass with epoxy resin, the burst pressure and sleeve thickness are determined. Finally, the repaired pipeline with a fiber-reinforced composite sleeve is investigated. The results enable operators to handle problems of corroded steel pipelines and develop effective repair activities during operation. For this reason, current research is important for the maintenance of underground steel networks.


2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.


Author(s):  
Tom M. Lawrence ◽  
Marvin D. Kemple

Abstract In previous work, numerical methods were developed to determine the pressure waves (pressure distribution) in the bearing gap of round externally pressurized gas bearings (EPB’s) that were pressurized through porous liners (PL bearings) or through liners with rows of feedholes (FH bearings). When integrated and differentiated these pressure portraits yield the net hydrodynamic force (FH) between the shaft and the bushing and the mass flow rates through the bearing gap. These results successfully replicated force-deflection curves and mass flow rate data for experimentally tested prototype FH and PL bearings over a wide range of mass flow constriction and clearances. Subsequently the numerical study was expanded to a broader design space of clearance and mass flow compensation. Also, a bearing performance mapping method of mapping the normalized bearing load over the clearance-eccentric deflection plane was developed for different levels of mass compensation. These performance maps produced a very interesting result as they indicated certain areas in the design space of FH bearings where static instability (negative stiffness) would be encountered. This static instability was not observed in the experimental data but is noted in references as known to occur in practice. Because this numerical method is based on the development of pressure wave portraits, the FH pressure wave could then be “dissected” in the areas of the onset of static instability which gave much insight as to the possible causes of static instability. This initial work, then, was perhaps the first to predict where in design space static instability would occur and yield some insight via examination of the corresponding pressure waves as to the cause. The numeric techniques developed, however are in no way limited to non-rotating bearings but are extensible to rotating bearings. The method is also easily extensible to examination of any configuration of feedholes or orifices. Nor is it limited to parallel deflections but can yield results for unbalanced loads. The method is also not limited to round bearings but can be applied to any cross-section configuration of bearing gap cross section such as a 3 lobed bearing or a slotted 3 lobed bearing. Examination of the resulting pressure wave development patterns for different scenarios can be examined to garner insight as to the causes of differing performance that can be applied to alterations towards optimization. Thus sharing in detail the developed numerical method underlying these studies seems worthwhile.


Author(s):  
Alton Reich ◽  
Victor Newman ◽  
Roberto Di Salvo ◽  
John Charest

Cured-in-place piping (CIPP) is used to repair existing pressure pipe that has compromised structural integrity and is no longer capable of holding operating pressure without leaking. It is often used to repair buried piping where digging the piping up to replace it would be inconvenient and/or cost prohibitive. CIPP is routinely used to repair water and sewer lines, and an ASTM specification exists to guide the design of the pipe repair for these applications. CIPP can also be used as a repair technique for piping at nuclear power plants; however, such use must be approved on a case-by-case basis. This paper discusses some of the design challenges associated with designing the CIPP for a nuclear plant application. It presents an overview of the analytical approach and the results.


2016 ◽  
Vol 823 ◽  
pp. 341-346
Author(s):  
Sebastian Radu ◽  
Marius Hârceagă ◽  
Gheorghe Alexandru Radu ◽  
Cristian Leahu ◽  
Horia Abăităncei ◽  
...  

In order to efficiently supercharge Diesel engines with pressure wave superchargers it is necessary to correlate the superchargers rotation speed with certain parameters of the supercharged engine. For this purpose, to reduce the research costs and duration, simulation models can be used which help to determine the parameters which have a major impact on the supercharger's rotational speed and efficiency. In this paper there are presented two simulation models: a one-dimensional (made in AMESim software) and a three dimensional (made in Fluent Software). This simulation models offer the possibility to visualize some dynamic phenomenon within the supercharger, like the evolution of the pressure waves or the turbulent flow inside the rotor channels. These phenomena are difficult and expensive to study with conventional methods.


Author(s):  
J. L. Parham ◽  
Y. B. Guo ◽  
W. H. Sutton

With the fuel prices reaching record highs and ever-increasing tighter environmental policies, hydrogen-powered vehicles have great potential to substantially increase overall fuel economy, reduce vehicle emissions, and decrease dependence on foreign oil imports. While hydrogen fuel is exciting for automotive industries due to its potentials of significant technical and economic advantages, design and manufacture safe and reliable hydrogen tanks is recognized as the number one priority in hydrogen technology development and deployment. Real life testing of tank performance is extremely useful, but very time consuming, expensive, and lacks a rigorous scientific basis, which prohibits the development of a more reliable hydrogen tank. However, very few testing and simulation results can be found in public literature. This paper focused on the development of an efficient finite element analysis (FEA) tool to provide a more economical alternative for hydrogen tank analysis, though it may not be an all-out replacement for physical testing. A FEA model has been developed for the hydrogen tank with 6061-T6 aluminum liner and carbon-fiber/epoxy shell to investigate the tank integrity at pre-stresses of 45.5 MPa, 70 MPa, and 105 MPa and operating pressures of 35 MPa, 70 MPa, and 105 MPa. The residual stresses induced by different pre-stresses are at the equivalent level in the middle section but vary significantly in other tank sections. Residual stress magnitudes may saturate at a certain pre-stress level. In contrast, the residual strains in the middle section increases with pre-stress. The simulation results indicate that the optimal pre-stress level depends on the specific operating pressure to enhance tank integrity. A certain area of the neck and the top and bottom domes also experiences peak stress and strain at pre-stressing and regular operating pressures. The research findings may help manufacturing industries to build safety into manufacturing practices of hydrogen storage infrastructures.


Sign in / Sign up

Export Citation Format

Share Document