Preparation and Co (II) Removal of ZnO/Poly-Piperazineamide Nanofiltration Membranes

Author(s):  
Xiaoguang Zhang ◽  
Xuexing Chen ◽  
Qingchun Chen ◽  
Zhaolong Deng ◽  
Yan Liu ◽  
...  

A series of nanofiltration membranes were prepared by interfacial polymerization of piperazine and terephthaloyl chloride on the surface of polyacrylonitrile (PAN) ultrafiltration membranes. ZnO nanoparticles were incorporated in the active separation layer to modify the performances of the membranes. The preparation conditions as the monomer concentration, dosage of nano-ZnO particles and the reaction time on removal of a simulated radioactive nuclide Co (II) were investigated. Fourier transform infrared in attenuated total reflection mode verified the formation of polyamide on the PAN ultrafiltration membrane. The scanning electron microscope images showed that the nano-ZnO particles can homogeneously fixed on the membrane surface. The retention of Co (II) increased with increasing the dosage of nano-ZnO in the range of 0∼0.03 g. Further adding more nano-ZnO, the rejection rate of Co (II) first decreased and then increased. The concentration of piperazine and terephthaloyl chloride showed similar effect on removal of Co (II) ion. 5 minutes polymerization time was sufficient to form an active separation layer on the substrate membrane which changed the separation mechanism from ultrafiltration to nanofiltration. The separation performance of NF3 prepared by the following conditions was optimum: 0.03g nano-ZnO, 0.6 wt% piperazine, 0.5 wt% terephthaloyl chloride, and the reaction time was 15 min. The rejection rates of 1000 mg/L Na2SO4 and Co2+ in CoCl2 solution were 90% and 75% respectively. The Co (II) removal rate can be increased to nearly 90% by using ethylenediaminetetraacetic acid disodium salt. Increasing the operation pressure or the feeding concentration of Co (II) can also improve the performances of the membranes in this experiment.

2015 ◽  
Vol 1767 ◽  
pp. 3-9
Author(s):  
Heriberto Rodríguez-Tobías ◽  
Graciela Morales ◽  
Javier Enríquez ◽  
Carlos Espinoza-González ◽  
Daniel Grande

ABSTRACTThe use of a catalyst is required to synthesize poly(D,L-lactide) (PLA) and tin (II) 2-ethylhexanoate could be highlighted among them. However, this kind of catalysts can produce bio-dangerous compounds limiting the PLA in medical applications, therefore there is a need to investigate novel bio-safe catalysts. Taking into account this problem, this communication reports the use of micro- and nano-ZnO particles as catalysts for the microwave-assisted polymerization of D,L-lactide. By microwave heating a high monomer conversion (higher than 95%) was achieved in a relatively short reaction time (3 hours). Morphology/size and concentration of ZnO particles presented a strong effect on the production of PLA, star-like microparticles leaded to conversion ca. 25%, well below to the values achieved with the nanoparticles. Furthermore, the formation of a ZnO-PLA hybrid was evidenced by spectroscopic and thermal characterization techniques. The methodology herein developed represents a new pathway for the green synthesis of PLA.


2019 ◽  
Vol 56 (3) ◽  
pp. 652-656
Author(s):  
Raul Chioibas ◽  
Florin Borcan ◽  
Ovidiu Mederle ◽  
Dana Stoian ◽  
Codruta Marinela Soica

Zinc oxide (ZnO) is an inorganic compound used for its antiseptic and skin healing properties. It is an excellent protective filter against UV radiation and it can be used as white pigment in pharmaceutical preparations. In this study, nano-ZnO particles were obtained by ultrasound treatment, and respectively by repeated freezing/heating process. The influence of synthesis method and of ultrasound generator parameters on the particles size and stability was observed. The results reveal that were obtained samples with a very good stability and sizes between 15 and 96 nm. It was found that synthesis based on ultrasound treatment lead to the formation of nanoparticles with lower sizes.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


Sign in / Sign up

Export Citation Format

Share Document