Two-Dimensional Study of the Turbulent Wake Behind a Square Cylinder Subject to Uniform Shear

2000 ◽  
Author(s):  
A. K. Saha ◽  
G. Biswas ◽  
K. Muralidhar

Abstract The flow past a square cylinder at a high Reynolds number has been simulated through direct calculations and through the calculations using turbulence models. The present investigation highlights significant differences between the two approaches in terms of instantaneous flow, Strouhal number and the aerodynamic forces. The time-averaged drag coefficient and the rms fluctuations due to the direct calculation are higher than those due to the turbulence model. However, Strouhal number is underpredicted in direct calculations. The effect of shear on the flow has also been determined using the turbulence model. The time-averaged drag coefficient is found to decrease with the increase in shear parameter up to a certain value. Then it increases with the further increase in the shear parameter. On the other hand, the lift coefficient increases with the increase in shear parameter. Strouhal number shows a decreasing trend with the increase in shear parameter whereas the rms values of the drag and lift coefficients increase with the shear parameter. Kármán Vortex Street, mainly comprising of clockwise vortices due to shear, decays slowly compared to uniform flow condition.

2001 ◽  
Vol 123 (3) ◽  
pp. 595-603 ◽  
Author(s):  
A. K. Saha ◽  
G. Biswas ◽  
K. Muralidhar

The flow past a square cylinder at a Reynolds number of 20,000 has been simulated through direct calculations and through the calculations using turbulence model. The present investigation highlights significant differences between the two approaches in terms of time-averaged flow, Strouhal number, and aerodynamic forces. The time-averaged drag coefficient and the rms fluctuations due to the direct calculations are higher than those due to the turbulence model. However, Strouhal number is underpredicted in the direct calculations. The effect of shear on the flow has also been determined using the turbulence model. The time-averaged drag coefficient is found to decrease with the increase in shear parameter up to a certain value. Then it increases with the further increase in the shear parameter. On the other hand, lift coefficient increases with the increase in shear parameter. Strouhal number shows a decreasing trend with the increase in shear parameter whereas the rms values of drag and lift coefficients increase with the shear parameter. The Ka´rma´n vortex street, mainly comprising clockwise vortices due to shear, decays slowly compared to the uniform flow condition.


Author(s):  
Y. T. Krishne Gowda ◽  
Ravindra Holalu Venkatdas ◽  
Vikram Chowdeswarally Krishnappa

In many mechanical engineering applications, separated flows often appear around any object such as tall buildings, monuments, and towers are permanently exposed to wind. Similarly, piers, bridge pillars, and legs of offshore platforms are continuously subjected to the load produced by maritime or fluvial streams. These bodies usually create a large region of separated flow and a massive unsteady wake region in the downstream. The highly asymmetric and periodic nature of flow in the downstream has attracted the attention of physicists, engineers and CFD practitioners. A lot of research work is carried out for a square cylinder but flow past square cylinders with and without corner modification work is not taken up. This motivated to take up the task of flow past two different sized square cylinders, numerically simulated. A Reynolds number of 100 and 200 is considered for the investigation. The flow is assumed to be two dimensional unsteady and incompressible. The computational methodology is carried out once the problem is defined the first step in solving the problem is to construct a geometry on which the simulation is planned. Once the geometry is constructed, proper assignment of its boundaries in accordance to the actual physical state is to be done. The various boundary options that are to be set. After setting the boundary types, the continuum type is set. The geometry is discretized into small control volumes. Once the surface mesh is completed, the mesh details are exported to a mesh file, then exported to Fluent, which is CFD solver usually run in background mode. This helps to prioritize the execution of the run. The run would continue until the required convergence criterion is reached or till the maximum number of iterations is completed. Results indicate, in case of chamfered and rounded corners in square cylinder, there is decrease in the wake width and thereby the lift and drag coefficient values. The form drag is reduced because of a higher average pressure downstream when separation is delayed by corner modification. The lift coefficients of Square cylinder with corner modification decreases but Strouhal number increases when compared with a square cylinder without corner modification. Strouhal number remains same even if magnitude of oscillations is increased while monitoring the velocity behind the cylinder. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. As the centre distance between two cylinders i.e., pitch-to-perimeter ratio is increased to 6,the behavior of the flow almost approaches to that of flow past a square cylinder of with and without modification of same condition. When the perimeter of the upstream cylinder with and without modification is larger than the downstream cylinder, the size of the eddies is always bigger in between the cylinders compared to the downstream of the second cylinder. The flow velocity in between the cylinders with and without corner modification are less compared to the downstream of the second cylinder. As the distance increases, the flow velocity in between the cylinders become almost equal to the downstream of the second cylinder. The results are presented in the form of streamlines, flow velocity, pressure distribution. drag coefficient, lift coefficient and Strouhal number.


Author(s):  
Y. T. Krishne Gowda ◽  
Holalu Venkatdas Ravindra ◽  
Vikram Chowdeswarally Krishnappa

Flow past square cylinders has attracted a great deal of attention because of its practical significance in engineering e.g., High rise buildings, monuments and towers. Similarly, bridge pillars, and legs of offshore platforms are continuously subjected to the load produced by maritime or fluvial streams. The presence of separated flows, reattachment, formation the vortices, un steadiness of flow, mass and momentum transfer across shear layer makes the flow field quite complex. Many research work was carried out for a single square cylinder and flow past two square cylinders, but with corner medications in square cylinder of different size arranged in tandem was not taken up. This has motivated to take up the flow past two different sized square cylinders i.e., smaller in upstream and larger in downstream which is numerically simulated by using Fluent software. Reynolds number of 100 and 200 is considered for the investigation. The flow is assumed to be two dimensional, unsteady and incompressible. The computational methodology is carried out once the problem is defined, the first step in solving the problem is to construct a geometry then proper assignment of boundaries are set. After setting the boundary types, the geometry is discretized into small control volumes. Once the surface mesh is completed by using Gambit software, the mesh along with boundary conditions are exported to fluent, which is CFD solver usually run in background mode. The run would continue until the required convergence criterion is reached or till the maximum number of iterations is completed. Results indicate, in case of chamfered and rounded corners in square cylinders of different size, there is decrease in the wake width and thereby the lift and drag coefficient values. The lift coefficients in Square cylinders of different size with corner modifications decreases but Strouhal number increases when compared with a single square cylinder without corner modifications. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. As the centre distance between two square cylinders i.e., PPR (pitch to perimeter ratio) with and without corner modifications is increased to 6, the flow velocity almost approaches to flow past a single square cylinder with and without modifications for same condition. When the size of the upstream square cylinder with and without modifications is smaller than that of the downstream square cylinder, the size of the eddies is always smaller in between the cylinders compared to the downstream of the second cylinder. The flow velocity in between the cylinders with and without corner modifications are less compared to the downstream of the second cylinder. Pressure on the downstream side of the cylinder is smaller than that on the upstream side of the cylinder for with and without corner modifications. Also, the front portion of the cylinder is experiencing highest pressure compared to the second cylinder for all the three cases i.e., PPR = 2, 4 and 6. Pressure at the upper side, bottom side and back side of square cylinder with and without corner modifications is of negative pressure, it is because of vortices generated at that surfaces. The downstream cylinder is found to experience higher lift compared to the upstream cylinder. The results are presented in the form of while the downstream cylinder is found to experience higher drag compared to the streamlines, flow velocity, pressure distribution, drag coefficient, lift coefficient and strouhal number.


Author(s):  
Sajjad Miran ◽  
Chang Hyun Sohn

Purpose – The purpose of this paper is to numerically investigate the influence of corner radius on flow past a square cylinder at a Reynolds number 500. Design/methodology/approach – Six models were studied, for R/D=0 (square cylinder), 0.1, 0.2, 0.3, 0.4, and 0.5 (circular cylinder), where R is the corner radius and D is the characteristic dimension of the body. The transient two-dimensional (2D) laminar and large eddy simulations (LES) models were employed using finite volume code. The Strouhal number, mean drag coefficient (CD), and root mean square (RMS) value of lift coefficient (CL,RMS), for different R/D values, were computed and compared with experimental and other numerical results. Findings – The computational results showed good agreement with previously published results for a Reynolds number, Re=500. It was found that the corner effect on a square cylinder greatly influences the flow characteristics around the cylinder. Results indicate that, as the corner radius ratio, R/D, increases, the Strouhal number increases rapidly for R/D=0-0.2, and then gradually rises between R/D=0.2 and 0.5. The minimum values of the mean drag coefficient and the RMS value of lift coefficient were found around R/D=0.2, which is verified by the time averaged streamwise velocity deficit profile. Originality/value – On the basis of the numerical results, it is concluded that rounded corners on a square cylinder are useful in reducing the drag and lift forces generated behind a cylinder. Finally, it is suggested that with a rounded corner ratio of around R/D=0.2, the drag and oscillation of the cylinder can be greatly reduced, as compared to circular and square cylinders.


2014 ◽  
Vol 989-994 ◽  
pp. 3468-3472 ◽  
Author(s):  
Cheng Wu ◽  
Yi Ping Wang ◽  
Xue Yang

For vehicle external aerodynamic computation, the selection of the turbulence model is very important. In current research, ten RANS turbulence models were introduced to compute the time-averaged flow field around the Ahmed model with 25° backlight angle. In order to evaluate the feasibility of the turbulence model, the results were compared with the related published experimental data. The results showed that the two equations RANS turbulence models were more favorable to compute the vehicle external flow field, but parts of the two equations turbulence model just could predict the aerodynamic drag coefficient or lift coefficient effectively. However, the results further revealed that the realizable k-ε could obtain the more accurate drag coefficient and lift coefficient simultaneously, and simulate the complex separation flow in the wake.


Author(s):  
Madhusuden Agrawal ◽  
Mohammad A. Elyyan

Flow over smooth cylinder at very high Reynolds number, ReD = 2×106, is simulated using the unsteady Scale Adaptive Simulation (SAS) turbulence model. Flow structures and vortex shedding were accurately captured. Grid sensitivity study was performed to compare averaged drag coefficient for a conformal fine mesh as well as non-conformal coarse mesh. Predicted value of drag coefficient was within 8% of the experimental value and Strouhal number compared well with the experimental observations.


2014 ◽  
Vol 628 ◽  
pp. 270-274
Author(s):  
Yi Bin He ◽  
Qi Zhi Shen

Thebased SST (shear strain transport) turbulence model combines the advantages of and turbulence models and performs well in numerical experiment. In the paper, the SST turbulence model is applied to model vehicle overtaking process with numerical simulation technology. The change graph of drag coefficient and side force coefficient are gained. Analysis of the phenomena is presented at the end.


2020 ◽  
Vol 01 (02) ◽  
pp. 29-36
Author(s):  
Md Rhyhanul Islam Pranto ◽  
Mohammad Ilias Inam

The aim of the work is to investigate the aerodynamic characteristics such as lift coefficient, drag coefficient, pressure distribution over a surface of an airfoil of NACA-4312. A commercial software ANSYS Fluent was used for these numerical simulations to calculate the aerodynamic characteristics of 2-D NACA-4312 airfoil at different angles of attack (α) at fixed Reynolds number (Re), equal to 5×10^5 . These simulations were solved using two different turbulence models, one was the Standard k-ε model with enhanced wall treatment and other was the SST k-ω model. Numerical results demonstrate that both models can produce similar results with little deviations. It was observed that both lift and drag coefficient increase at higher angles of attack, however lift coefficient starts to reduce at α =13° which is known as stalling condition. Numerical results also show that flow separations start at rare edge when the angle of attack is higher than 13° due to the reduction of lift coefficient.


Author(s):  
Hao Wu ◽  
Antonio Carlos Fernandes ◽  
Renjing Cao

Abstract The uniform flow over a nominally two-dimensional normal thin flat plate with blockage ratio 0.214 was numerically investigated in three dimensions by three methods: unsteady Reynolds-averaged Navier–Stokes (URANS) based on the realizable k-epsilon (RKE) turbulence model, URANS based on the k–omega shear stress transport (SST) turbulence model and detached eddy simulation (DES). The Reynolds number based on the inlet flow velocity and the chord width of the plate was 117000. A comprehensive comparison against earlier experimental results showed that URANS-SST method only could give a correct Strouhal number but overestimated the mean base pressure distribution and mean drag coefficient, while URANS-RKE and DES methods succeeded in giving accurate prediction of all. Moreover, by comparing the instantaneous vorticity contours and 3D turbulent flow structures, it is found that DES is better suited for the present case because it can capture irregular small-scale structures and reproduce the three-dimensionality and low-frequency unsteadiness of the vortex shedding. Finally, through the volume-of-fluid (VOF) based simulation of the free surface, it is demonstrated that the free surface has no significant effect on mean drag coefficient and Strouhal number.


Author(s):  
Nícolas Lima Oliveira ◽  
Eric Vargas Loureiro ◽  
Patrícia Habib Hallak

This work presents the studies  obtained using OpenFOAM OpenSource Computational Fluid Dynamics (CFD) Software. Experiments were performed to predict lift coefficient and drag coefficient curves for the NACA2412 profile. Subsequently, the results obtained were compared with the results of the bibliography and discussed.


Sign in / Sign up

Export Citation Format

Share Document