Investigation of ZnFe2O4 Nanoparticles Prepared by High Energy Milling

Author(s):  
S. S. Srinivasan ◽  
N. Kislov ◽  
Yu. Emirov ◽  
D. Y. Goswami ◽  
E. K. Stefanakos

Nanoparticles of Zinc Ferrite (ZnFe2O4) prepared by both wet- and dry- high-energy ball milling (HEBM), have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), surface area and pore size distribution (BET) and wavelength-dependent diffuse reflectance and scattering turned into absorption coefficient estimation using the Kubelka-Munk theory. It was found that after 72 hours of HEBM, the particle size was decreased from 220 nm for the initial material to 16.5 nm and 9.4 nm for the wet- and dry-milled samples, respectively. The optical absorption analysis revealed that the energy gap is increased (blue shift) by 0.45 eV for wet-milled and decreased (“anomalous” red shift) by 0.15 eV for dry-milled samples of ZnFe2O4 as the particle size decreased.

2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

Nano LIFE ◽  
2014 ◽  
Vol 04 (04) ◽  
pp. 1441014 ◽  
Author(s):  
Qi Liu ◽  
Weiping Hao ◽  
Yongguang Yang ◽  
Aurore Richel ◽  
Canbin Ouyang ◽  
...  

Nanocrystalline celluloses (NCCs) were separated from four commercial microcrystalline celluloses (MCCs) by an acid hydrolysis–sonication treatment. Transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectrum, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were conducted to investigate the NCCs. MCCs with different morphologies and particle sizes showed different aggregation degrees. The aggregation of MCCs followed the order MCC1 > MCC3 > MCC2 > MCC4, which is the same order of the heights of the resulting NCCs. The best uniformity and thermal stability were characterized for NCC3, which was produced by MCC3 with smallest original particle size and good dispersity among the four MCCs. This result suggests that both the original particle size and dispersity of MCCs had significant effects on separated NCCs.


1998 ◽  
Vol 535 ◽  
Author(s):  
P. Kopperschmidt ◽  
S T. Senz ◽  
R. Scholz ◽  
G. Kästner ◽  
U. Gösele ◽  
...  

AbstractWe realized “compliant” substrates in the square centimeter range by twist-wafer bonding of an (100) GaAs handle wafer to another (100) GaAs wafer with a several nm thick epitaxially grown GaAs layer followed by an appropriate back-etch procedure. The twist angle between the two GaAs wafers was chosen between 4 and 15 degrees. The twisted layers were characterized by area scanned X-ray diffraction, optical and electron microscopy and atomic force microscopy. Occasionally we observed regions showing pinholes in the transferred thin twistbonded GaAs layer.After epitaxial deposition of 300 nm InP and InGaAs films with different degrees of mismatch on these substrates, transmission electron microscopy revealed grains which are epitaxially oriented to either the substrate or the twist-bonded layer. The grain boundaries between the twisted and untwisted grains probably collect threading dislocations, thus reducing their density in the areas free of boundaries.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Angela De Bonis ◽  
Agostino Galasso ◽  
Antonio Santagata ◽  
Roberto Teghil

A MgB2target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.


2013 ◽  
Vol 24 ◽  
pp. 133-139 ◽  
Author(s):  
Madhavi Thakurdesai ◽  
A. Mahadkar ◽  
Varsha Bhattacharyya

Ion beam irradiation is a unique non-equilibrium technique for phase formation and material modification. Localized rise in temperature and ultra fast (~1012 s) dissipations of impinging energy make it an attractive tool for nanostructure synthesize. Dense electronic excitation induced spatial and temporal confinement of high energy in a narrow dimension leads the system to a highly non-equilibrium state and the system then relaxes dynamically inducing nucleation of nanocrystals along the latent track. In the present investigation, amorphous thin films of TiO2 are irradiated by 100 MeV Ag ion beam. These irradiated thin films are characterized by Atomic Force Microscopy (AFM), Glancing Angle X-ray Diffraction (GAXRD), Transmission Electron Microscopy (TEM) and UV-VIS absorption spectroscopy. AFM and TEM studies indicate formation of circular nanoparticles of size 10±2 nm in a film irradiated at a fluence of 1×1012 ions.cm-2. Nanophase formation is also inferred from the blueshift observed in UV-VIS absorption band edge.


2019 ◽  
Vol 29 (4) ◽  
pp. 67
Author(s):  
Barakat A. F. Kamel

In this research work, the nanoparticles of aluminum oxide were synthesized by two ways. The first way is the biological by using (Pseudomonas aeruginosa) bacteria with a rate diameter (102.35) nm. The second way is the electrochemical with a rate diameter (62) nm. These nanoparticles were characterized by Atomic Force Microscopy (AFM), X-Ray diffraction technique (XRD), Transmission Electron Microscopy (TEM) and Scanninig Electron Microscopy (SEM). Alumina nanoparticles are thermodynamically stable particles over a wide temperature range . The biological activity of these nanoparticles toward different species of pathogenic bacteria (Staphylococcus aureus ) and (Pseudo monas) has been investigated. The results stated that the nanoparticles prepared by chemical way was more effective on the inhibition of bacteria than the nanoparticles prepared by biological way


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1285 ◽  
Author(s):  
Andrei Trofimuk ◽  
Diana Muravijova ◽  
Demid Kirilenko ◽  
Aleksandr Shvidchenko

Detonation nanodiamond is a commercially available synthetic diamond that is obtained from the carbon of explosives. It is known that the average particle size of detonation nanodiamond is 4–6 nm. However, it is possible to separate smaller particles. Here we suggest a new approach for the effective separation of detonation nanodiamond particles by centrifugation of a “hydrosol/glycerol” system. The method allows for the production of the detonation nanodiamond hydrosol with a very sharp distribution in size, where more than 85% of particles have a size ranging 1–4 nm. The result is supported by transmission electron microscopy, atomic force microscopy, and dynamic light scattering.


Sign in / Sign up

Export Citation Format

Share Document