Recent Advancement on Liquid Metal Cooling for Thermal Management of Computer Chip

Author(s):  
Jing Liu ◽  
Yue-Guang Deng ◽  
Zhong-Shan Deng

Efficient cooling of a high performance computer chip has been an extremely important however becoming more and more tough issue. The recently invented liquid metal cooling method is expected to pave the way for high flux heat dissipation which is hard to tackle otherwise by many existing conventional cooling strategies. However, as a new thermal management method, its application also raised quite a few challenging fundamental and practical issues for solving. To illustrate the development of the new technology, this talk is dedicated to present an overview on the latest advancements made in the author’s lab in developing the new generation chip cooling device based on the liquid metal coolant with melting point around room temperature. The designing and optimization of the cooling device and component will be discussed. Several major barriers to prevent the new method from practical application such as erosion between liquid metal coolant and its substrate material will be outlined with good solutions clarified. Performance comparison between the new chip cooling method with commercially available products with highest quality such as air cooling, water cooling and heat pipe cooling devices were evaluated. Typical examples of using liquid metal cooling for the thermal management of a real PC or even super computer will be demonstrated. Further, miniaturizations on the prototype device by extending it as a MEMS cooling device or mini/micro channel liquid metal cooling device will also be explained. Along with the development of the hardware, some fundamental heat transfer issues in characterizing the liquid metal cooling device will be discussed through numerical or analytical model. Future challenging issues in pushing the new technology into large scale practices will be raised. From all the outputs obtained so far, it can be clearly seen that the new cooling strategy will find very promising and significant applications in a wide variety of engineering situations whenever thermal managements or heat transport are needed.

Author(s):  
Yerasimos Yerasimou ◽  
Volker Pickert ◽  
Siyang Dai ◽  
Zhiqiang Wang

Author(s):  
Peipei Li ◽  
Jing Liu ◽  
Yixin Zhou

Tremendous attentions have been focused on thermal management to control the temperature of many advanced integrated electronic devices. The liquid metal cooling has recently been validated as a highly effective method to dissipate heat from hot chips. In this study, a practical design and implementation of a buoyancy effect driven liquid metal cooling device for the automatic thermal management of hot chips in a closed cabinet were demonstrated. The principles, especially the theory for convective thermal resistance of liquid metal cooling was provided for guiding optimization of the device. A model prototype was then fabricated and tested. Experiments were performed when two simulated hot chips in the closed cabinet worked at different heat loads and different angles with the horizontal plane. It was shown that for the one chip case, the cooling device could maintain the chip temperature to below 85.1 °C at the ambient temperature 20 °C when the heat load was about 122 W. The cooling performance of the device could achieve better when the angle between the cabinet and the horizontal plane varied from 0 °C to 90 °C. With two chips working simultaneously, both chips had close temperature and hot spot did not appear easily when subject to large power, which will help reduce thermal stress and enhance reliability of the system. The practical value of the self-driven liquid metal cooling device is rather evident. Given its reliability, simplicity, and efficiency, such device can possibly be used for heat dissipation of multichip in closed space in the future.


Author(s):  
Jing Liu ◽  
Zhong-Shan Deng ◽  
Zhi-Zhu He

The room temperature liquid metal cooling is quickly emerging as a powerful way for the thermal management in many advanced high heat flux devices, spanning from electronics, optoelectronics, battery, to power system etc. Except for its pretty high conductivity that a metal coolant could offer, the unique merit lying behind this new generation cooling strategy is its drivability of the highly conductive coolant through the electromagnetic effect where no moving elements are involved and thus only very few energy consumption is needed. In addition, even waste heat could be strong enough to generate applicable electricity for such flow driving purpose. More directly, the temperature gradient intrinsically generated between the heat source and the sink has also been managed to drive the flow of the coolant and realize an automatic practical enough cooling in some situations. All these practices lead to a totally noiseless pumping of the heat delivery and a compact and reliable cooling modular can thus be possible. Starting from this basic point, we are dedicated here to present an overview on the art and science in developing the technical strategies for a smart driving of the liquid metal cooling of the target devices. Designing philosophy for an innovated thermal management will be discussed. Particularly, electromagnetic pumping, waste thermoelectricity driving, thermosyphon flow effect, etc. will be comparatively evaluated with each of the working performances interpreted. Power consumption rate and efficiency will be quantitatively digested. Typical application examples in the cooling of a series of device areas will be illustrated. Further improvement on the cooling solution along this category will be suggested. Challenging issues in pushing the new technology into large scale utilization will be raised. It is expected that such silent self-driving of the liquid metal coolant will find unique and important values in a wide variety of thermal management areas where reliability, compactness, low noise and energy saving are urgently requested.


Author(s):  
Jing Liu ◽  
Yi-Xin Zhou ◽  
Yong-Gang Lv ◽  
Teng Li

Conventional methods for thermal management of computer chips are approaching their practical application limit for recently emerging high integrity and high power processors. There is a strong demand to develop alternative approaches to accommodate to the trend of increasing industrial need. In this paper, a prototype of the newly proposed liquid metal based chip cooling device using electromagnetic pump as the flow driving force was fabricated and demonstrated. The technical routes to build up the new miniaturized system were illustrated. Being flowing based, completely electricity-controllable, and almost entirely made of metal, the new cooling device has a rather strong heat dissipation capability compared with that of the conventional forced liquid or air cooling approaches. A series of experiments successfully showed that the EM pump designed and fabricated in this paper is very flexible in driving the circulation flow of the liquid gallium, and the cooling device thus built up can significantly reduce the temperature of a simulating heating module. Further, promising strategies to optimize the present device were suggested and discussed. A series of new issues concerning the heat and fluid transport, and electromagnetic field effect of liquid metal in developing the micro/nano scale cooling devices were raised by interpreting the theoretical models established for characterizing the running behaviors of the present system. The liquid metal based cooling device would find exciting applications in the heat dissipation area where extremely high heat flux and very small geometry were seriously requested.


Atomic Energy ◽  
2021 ◽  
Vol 129 (3) ◽  
pp. 127-134
Author(s):  
V. M. Alipchenkov ◽  
Ya. V. Grudtsyn ◽  
N. A. Mosunova

2016 ◽  
Vol 23 (3) ◽  
pp. 379-382
Author(s):  
O. N. Kashinsky ◽  
P. D. Lobanov ◽  
A. S. Kurdyumov ◽  
N. A. Pribaturin

2017 ◽  
Vol 59 (7-8) ◽  
pp. 513-517
Author(s):  
Yu. A. Bondarenko ◽  
A. B. Echin ◽  
M. Yu. Kolodyazhnyi ◽  
V. A. Surova

Sign in / Sign up

Export Citation Format

Share Document