Enhanced Pool Boiling Performance on Micro-, Nano-, and Hybrid-Structured Surfaces

Author(s):  
Qian Li ◽  
Wei Wang ◽  
Chris Oshman ◽  
Benoit Latour ◽  
Chen Li ◽  
...  

Thermal management plays an important role in both high power electronics and energy conversion systems. A key issue in thermal management is the dissipation of the high heat flux generated by functional components. In this paper, various microstructures, nanostructures and hybrid micro/nano-structures were successfully fabricated on copper (Cu) surfaces, and the corresponding pool boiling heat transfer performance was systematically studied. It is found that the critical heat flux (CHF) of hybrid structured surfaces is about 15% higher than that of the surfaces with nanowires only and micro-pillars only. More importantly, the superheat at CHF for the hybrid structured surface is much smaller than that of the micro-pillared surface (about 35%), and a maximum heat transfer coefficient (HTC) of about 90,000W/m2K is obtained. Compared with the known best pool boiling performance on biporous media, a much larger HTC and much lower superheat at a heat flux of 250W/cm2 have been obtained on the novel hybrid-structured surfaces.

Author(s):  
Aranya Chauhan ◽  
Satish G. Kandlikar

Abstract The trend of miniaturization in electronics presents a great challenge in the thermal management of devices. The continuous increase in the number of transistors in the processor leads to high heat flux generation, limiting the performance of the device. Boiling heat transfer offers a great heat removal competency while maintaining the low chip temperatures. The critical heat flux (CHF) dictates the maximum heat removal ability, and heat transfer coefficient (HTC) defines the efficiency of the boiling process. This pool boiling study is focused on using a manifold containing a symmetric dual taper over the heating surface. The heat transfer performance of this configuration is evaluated for different taper angles in the manifold. The macro-convection assisted by vapor columns during boiling enhance the CHF and HTC limit significantly. A CHF of 287 W/cm2 with an HTC of 116 kW/cm2°C was achieved with a plain copper surface, representing greater than a 2-fold increases in each over a plain surface.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. Jung ◽  
S. J. Kim ◽  
J. Kim

Experimental work was undertaken to investigate the process by which pool-boiling critical heat flux (CHF) occurs using an IR camera to measure the local temperature and heat transfer coefficients on a heated silicon surface. The wetted area fraction (WF), the contact line length density (CLD), the frequency between dryout events, the lifetime of the dry patches, the speed of the advancing and receding contact lines, the dry patch size distribution on the surface, and the heat transfer from the liquid-covered areas were measured throughout the boiling curve. Quantitative analysis of this data at high heat flux and transition through CHF revealed that the boiling curve can simply be obtained by weighting the heat flux from the liquid-covered areas by WF. CHF mechanisms proposed in the literature were evaluated against the observations.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Bharath Ramakrishnan ◽  
Yaser Hadad ◽  
Sami Alkharabsheh ◽  
Paul R. Chiarot ◽  
Bahgat Sammakia

Data center energy usage keeps growing every year and will continue to increase with rising demand for ecommerce, scientific research, social networking, and use of streaming video services. The miniaturization of microelectronic devices and an increasing demand for clock speed result in high heat flux systems. By adopting direct liquid cooling, the high heat flux and high power demands can be met, while the reliability of the electronic devices is greatly improved. Cold plates which are mounted directly on to the chips facilitate a lower thermal resistance path originating from the chip to the incoming coolant. An attempt was made in the current study to characterize a commercially available cold plate which uses warm water in carrying the heat away from the chip. A mock package mimicking a processor chip with an effective heat transfer area of 6.45 cm2 was developed for this study using a copper block heater arrangement. The thermo-hydraulic performance of the cold plates was investigated by conducting experiments at varying chip power, coolant flow rates, and coolant temperature. The pressure drop (ΔP) and the temperature rise (ΔT) across the cold plates were measured, and the results were presented as flow resistance and thermal resistance curves. A maximum heat flux of 31 W/cm2 was dissipated at a flow rate of 13 cm3/s. A resistance network model was used to calculate an effective heat transfer coefficient by revealing different elements contributing to the total resistance. The study extended to different coolant temperatures ranging from 25 °C to 45 °C addresses the effect of coolant viscosity on the overall performance of the cold plate, and the results were presented as coefficient of performance (COP) curves. A numerical model developed using 6SigmaET was validated against the experimental findings for the flow and thermal performance with minimal percentage difference.


Author(s):  
Qingjun Cai ◽  
Avijit Bhunia ◽  
Yuan Zhao

Silicon is the major material in IC manufacture. It has high thermal conductivity and is compatible with precision micro-fabrication. It also has decent thermal expansion coefficient to most semiconductor materials. These characteristics make it an ideally underlying material for fabricating micro/mini heat pipes and their wick structures. In this paper, we focus our research investigations on high heat flux phase change capacity of the silicon wick structures. The experimental wick sample is composed of silicon pillars 320μm in height and 30 ∼ 100μm in diameter. In a stainless steel test chamber, synchronized visualizations and measurements are performed to crosscheck experimental phenomena and data. Using the mono-wick structure with large silicon pillar of 100μm in diameter, the phase change on the silicon wick structure reaches its maximum heat flux at 1,130W/cm2 over a 2mm×2mm heating area. The wick structure can fully utilize the wick pump capability to supply liquid from all 360° directions to the center heating area. In contrast, the large heating area and fine silicon pillars 10μm in diameter significantly reduces liquid transport capability and suppresses generation of nucleate boiling. As a result, phase change completely relies on evaporation, and the CHF of the wick structure is reduced to 180W/cm2. An analytical model based on high heat flux phase change of mono-porous wick structures indicates that heat transfer capability is subjected to the ratio between the wick particle radius and the heater dimensions, as well as vapor occupation ratio of the porous volume. In contrast, phase change heat transfer coefficients of the wick structures essentially reflect material properties of wick structure and mechanism of two-phase interactions within wick structures.


2015 ◽  
Author(s):  
◽  
Feng Zhao Zhang

As electronics technologies rapidly develop with a demand for more power and miniaturization, effective thermal management of these systems becomes much more important. The oscillating heat pipe (OHP) is a promising highly efficient heat transfer device that is great for high heat flux applications common in the electronics industry. In the current investigation, the wettability effect on the heat transfer performance of OHPs has been conducted. 1). The overall performance of configuration of hydrophilic evaporator/ hydrophobic condenser and hydrophobic evaporator/ hydrophilic condenser was worse than the nontreated OHP, however; the oscillations were much damper when comparing the amplitudes. 2). High oscillating motion occurs in the OHP with the hydrophilic surface while low oscillating motion occurs in the untreated OHP. 3). A mathematical model shows that contact angle increases the oscillating motion decreases. 4). A theoretical model predicting operating limit is developed. Results show that radius and charging ratio has a large effect on the maximum heat transfer limit. Working fluids changes the operating limit.


1989 ◽  
Vol 111 (2) ◽  
pp. 518-524 ◽  
Author(s):  
M.-C. Chyu ◽  
A. E. Bergles

Extensive experimental tests for tubes with commercial structured surfaces in a horizontal single-tube falling-film evaporator were conducted. The test sections were hollow copper cylinders with GEWA-T, Thermoexcel-E, or High Flux surfaces electrically heated by inserted cartridge heaters. A smooth surface cylinder was also tested for reference. All tubes were tested in both pool boiling and falling-film evaporation with water. The results reveal that falling-film evaporation provides much higher heat transfer coefficients than pool boiling in the low heat flux, convective region. The GEWA-T surface enhances heat transfer through its increased and accessible area, while Thermoexcel-E and High Flux demonstrate high heat transfer performances because of enhanced nucleate boiling. The falling-film evaporation data for the structured surfaces either merge or show a tendency to merge with the respective pool boiling curves at high heat fluxes. Unusual incipient boiling behavior of Thermoexcel-E and the effects of factors such as surface aging, surface subcooling, film flow rate, liquid feed height, and rate of heat flux change, are described.


Sign in / Sign up

Export Citation Format

Share Document