FMM/GPU Accelerated BEM Simulations of Emulsion Flow in Microchannels

Author(s):  
Olga A. Abramova ◽  
Yulia A. Itkulova ◽  
Nail A. Gumerov

Modeling of motion of two-phase liquids in microchannels of different shape is needed for a variety of industrial applications, such as enhanced oil recovery, advanced material processing, and biotechnology. Development of efficient computational techniques is required for understanding the mechanisms of many effects in “liquid-liquid” systems, such as the jamming of emulsion flows in microchannels and blood cell motion in capillaries. In the present study, a mathematical model of a three-dimensional flow of a mixture of two Newtonian liquids of a droplet structure in microchannels at low Reynold’s numbers is considered. The computational approach is based on the boundary element method accelerated both via an advanced scalable algorithm (FMM), and via utilization of a heterogeneous computing architecture (multicore CPUs and graphics processors). To solve large scale problems flexible GMRES solver is developed. Example computations are conducted for dynamics of many deformable drops of different sizes in microchannels. The results of simulations and accuracy/performance of the method are discussed. The developed approach can be used for solution of a wide range of problems related to emulsion flows in micro- and nanoscales.

Author(s):  
Stefan Puttinger ◽  
Mahdi Saeedipour

AbstractThis paper presents an experimental investigation on the interactions of a deflected submerged jet into a liquid pool with its above interface in the absence and presence of an additional lighter liquid. Whereas the former is a free surface flow, the latter mimics a situation of two stratified liquids where the liquid-liquid interface is disturbed by large-scale motions in the liquid pool. Such configurations are encountered in various industrial applications and, in most cases, it is of major interest to avoid the entrainment of droplets from the lighter liquid into the main flow. Therefore, it is important to understand the fluid dynamics in such configurations and to analyze the differences between the cases with and without the additional liquid layer. To study this problem, we applied time-resolved particle image velocimetry experiments with high spatial resolution. A detailed data analysis of a small layer beneath the interface shows that although the presence of an additional liquid layer stabilizes the oscillations of the submerged jet significantly, the amount of kinetic energy, enstrophy, and velocity fluctuations concentrated in the proximity of the interface is higher when the oil layer is present. In addition, we analyze the energy distribution across the eigenmodes of a proper orthogonal distribution and the distribution of strain and vortex dominated regions. As the main objective of this study, these high-resolution time-resolved experimental data provide a validation platform for the development of new models in the context of the volume of fluid-based large eddy simulation of turbulent two-phase flows.


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 647-659 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns ◽  
H.. Hoteit

Summary An accurate description of the microemulsion-phase behavior is critical for many industrial applications, including surfactant flooding in enhanced oil recovery (EOR). Recent phase-behavior models have assumed constant-shaped micelles, typically spherical, using net-average curvature (NAC), which is not consistent with scattering and microscopy experiments that suggest changes in shapes of the continuous and discontinuous domains. On the basis of the strong evidence of varying micellar shape, principal micellar curves were used recently to model interfacial tensions (IFTs). Huh's scaling equation (Huh 1979) also was coupled to this IFT model to generate phase-behavior estimates, but without accounting for the micellar shape. In this paper, we present a novel microemulsion-phase-behavior equation of state (EoS) that accounts for changing micellar curvatures under the assumption of a general-prolate spheroidal geometry, instead of through Huh's equation. This new EoS improves phase-behavior-modeling capabilities and eliminates the use of NAC in favor of a more-physical definition of characteristic length. Our new EoS can be used to fit and predict microemulsion-phase behavior irrespective of IFT-data availability. For the cases considered, the new EoS agrees well with experimental data for scans in both salinity and composition. The model also predicts phase-behavior data for a wide range of temperature and pressure, and it is validated against dynamic scattering experiments to show the physical significance of the approach.


2001 ◽  
Vol 432 ◽  
pp. 219-283 ◽  
Author(s):  
G. BRIASSULIS ◽  
J. H. AGUI ◽  
Y. ANDREOPOULOS

A decaying compressible nearly homogeneous and nearly isotropic grid-generated turbulent flow has been set up in a large scale shock tube research facility. Experiments have been performed using instrumentation with spatial resolution of the order of 7 to 26 Kolmogorov viscous length scales. A variety of turbulence-generating grids provided a wide range of turbulence scales with bulk flow Mach numbers ranging from 0.3 to 0.6 and turbulent Reynolds numbers up to 700. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was also found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A possible mechanism responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid. Measurements of the time-dependent, three dimensional vorticity vectors were attempted for the first time with a 12-wire miniature probe. This also allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. It was found that the fluctuations of these quantities increase with increasing mean Mach number of the flow. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause.


2015 ◽  
Vol 15 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Andris Bojarevičs ◽  
Toms Beinerts ◽  
Mārtiņš Sarma ◽  
Yurii Gelfgat

AbstractMultiple configurations of synchronously rotating permanent magnet cylinders magnetized across the axes are proposed for liquid metal stirring for homogenization as well as for pumping. Universal analytical model is used for an initial parameter analysis. Then experimental setups were built to perform physical modelling of the industrial applications, e.g. large-scale metallurgical furnaces. Velocity distribution in the liquid metal was measured using different methods: the Ultrasound Doppler anemometry and the potential difference probes. The study shows that the cylindrical permanent magnet setups can achieve up to 10 times higher energy efficiency compared to AC inductors and have potential of wide-range industrial application, e.g. can be used as stirrers for secondary aluminium furnaces with up to 50 cm thick walls.


2019 ◽  
Vol 875 ◽  
pp. 854-883 ◽  
Author(s):  
Kelli Hendrickson ◽  
Gabriel D. Weymouth ◽  
Xiangming Yu ◽  
Dick K.-P. Yue

We present high-resolution implicit large eddy simulation (iLES) of the turbulent air-entraining flow in the wake of three-dimensional rectangular dry transom sterns with varying speeds and half-beam-to-draft ratios $B/D$. We employ two-phase (air/water), time-dependent simulations utilizing conservative volume-of-fluid (cVOF) and boundary data immersion (BDIM) methods to obtain the flow structure and large-scale air entrainment in the wake. We confirm that the convergent-corner-wave region that forms immediately aft of the stern wake is ballistic, thus predictable only by the speed and (rectangular) geometry of the ship. We show that the flow structure in the air–water mixed region contains a shear layer with a streamwise jet and secondary vortex structures due to the presence of the quasi-steady, three-dimensional breaking waves. We apply a Lagrangian cavity identification technique to quantify the air entrainment in the wake and show that the strongest entrainment is where wave breaking occurs. We identify an inverse dependence of the maximum average void fraction and total volume entrained with $B/D$. We determine that the average surface entrainment rate initially peaks at a location that scales with draft Froude number and that the normalized average air cavity density spectrum has a consistent value providing there is active air entrainment. A small parametric study of the rectangular geometry and stern speed establishes and confirms the scaling of the interface characteristics with draft Froude number and geometry. In Part 2 (Hendrikson & Yue, J. Fluid Mech., vol. 875, 2019, pp. 884–913) we examine the incompressible highly variable density turbulence characteristics and turbulence closure modelling.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kun Liu ◽  
Wenxu Song ◽  
Yuqi Deng ◽  
Huiyue Yang ◽  
Chunlan Song ◽  
...  

AbstractThe dearomatization of arenes represents a powerful synthetic methodology to provide three-dimensional chemicals of high added value. Here we report a general and practical protocol for regioselective dearomative annulation of indole and benzofuran derivatives in an electrochemical way. Under undivided electrolytic conditions, a series of highly functionalized five to eight-membered heterocycle-2,3-fused indolines and dihydrobenzofurans, which are typically unattainable under thermal conditions, can be successfully accessed in high yield with excellent regio- and stereo-selectivity. This transformation can also tolerate a wide range of functional groups and achieve good efficiency in large-scale synthesis under oxidant-free conditions. In addition, cyclic voltammetry, electron paramagnetic resonance (EPR) and kinetic studies indicate that the dehydrogenative dearomatization annulations arise from the anodic oxidation of indole into indole radical cation, and this process is the rate-determining step.


2013 ◽  
Vol 19 (6) ◽  
pp. 1678-1687 ◽  
Author(s):  
Jean-Pierre Da Costa ◽  
Stefan Oprean ◽  
Pierre Baylou ◽  
Christian Germain

AbstractThough three-dimensional (3D) imaging gives deep insight into the inner structure of complex materials, the stereological analysis of 2D snapshots of material sections is still necessary for large-scale industrial applications for reasons related to time and cost constraints. In this paper, we propose an original framework to estimate the orientation distribution of generalized cylindrical structures from a single 2D section. Contrary to existing approaches, knowledge of the cylinder cross-section shape is not necessary. The only requirement is to know the area distribution of the cross-sections. The approach relies on minimization of a least squares criterion under linear equality and inequality constraints that can be solved with standard optimization solvers. It is evaluated on synthetic data, including simulated images, and is applied to experimental microscopy images of fibrous composite structures. The results show the relevance and capabilities of the approach though some limitations have been identified regarding sensitivity to deviations from the assumed model.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1857 ◽  
Author(s):  
Swati Sharma

When certain polymers are heat-treated beyond their degradation temperature in the absence of oxygen, they pass through a semi-solid phase, followed by the loss of heteroatoms and the formation of a solid carbon material composed of a three-dimensional graphenic network, known as glassy (or glass-like) carbon. The thermochemical decomposition of polymers, or generally of any organic material, is defined as pyrolysis. Glassy carbon is used in various large-scale industrial applications and has proven its versatility in miniaturized devices. In this article, micro and nano-scale glassy carbon devices manufactured by (i) pyrolysis of specialized pre-patterned polymers and (ii) direct machining or etching of glassy carbon, with their respective applications, are reviewed. The prospects of the use of glassy carbon in the next-generation devices based on the material’s history and development, distinct features compared to other elemental carbon forms, and some large-scale processes that paved the way to the state-of-the-art, are evaluated. Selected support techniques such as the methods used for surface modification, and major characterization tools are briefly discussed. Barring historical aspects, this review mainly covers the advances in glassy carbon device research from the last five years (2013–2018). The goal is to provide a common platform to carbon material scientists, micro/nanomanufacturing experts, and microsystem engineers to stimulate glassy carbon device research.


1985 ◽  
Vol 25 (1) ◽  
pp. 95
Author(s):  
S.T. Henzell ◽  
H.R. Irrgang ◽  
E.J. Janssen ◽  
R.A.H. Mitchell ◽  
G.O. Morrell ◽  
...  

The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum.The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43° API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP.In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir.The model was validated by history matching an extensive suite of Repeat Formation Test (RFT)* pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate.This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.* Mark of Schlumberger


2012 ◽  
Vol 19 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Seyyed M. Hasheminejad ◽  
Yaser Mirzaei

A three-dimensional elasticity-based continuum model is developed for describing the free vibrational characteristics of an important class of isotropic, homogeneous, and completely free structural bodies (i.e., finite cylinders, solid spheres, and rectangular parallelepipeds) containing an arbitrarily located simple inhomogeneity in form of a spherical or cylindrical defect. The solution method uses Ritz minimization procedure with triplicate series of orthogonal Chebyshev polynomials as the trial functions to approximate the displacement components in the associated elastic domains, and eventually arrive at the governing eigenvalue equations. An extensive review of the literature spanning over the past three decades is also given herein regarding the free vibration analysis of elastic structures using Ritz approach. Accuracy of the implemented approach is established through proper convergence studies, while the validity of results is demonstrated with the aid of a commercial FEM software, and whenever possible, by comparison with other published data. Numerical results are provided and discussed for the first few clusters of eigen-frequencies corresponding to various mode categories in a wide range of cavity eccentricities. Also, the corresponding 3D mode shapes are graphically illustrated for selected eccentricities. The numerical results disclose the vital influence of inner cavity eccentricity on the vibrational characteristics of the voided elastic structures. In particular, the activation of degenerate frequency splitting and incidence of internal/external mode crossings are confirmed and discussed. Most of the results reported herein are believed to be new to the existing literature and may serve as benchmark data for future developments in computational techniques.


Sign in / Sign up

Export Citation Format

Share Document