scholarly journals Thermal-Structural Design of Actively-Cooled Panels Reinforced by Light-Weight Truss Cores

Author(s):  
Hongwei Song ◽  
Mingjun Li ◽  
Chenguang Huang ◽  
Xi Wang

This paper focuses on thermal-structural analysis and lightweight design of actively-cooled panels reinforced by low density lattice-framed material (LFM) truss cores. Numerical models for actively-cooled panels are built up with parametric codes to perform the coupled thermal-structural analysis, considering the internal thermal environment of convective heat transfer in the combustor and convective heat transfer in the cooling channel, and internal pressures from the combustion gas and the coolant. A preliminary comparison of the LFM truss reinforced actively-cooled panel and the non-reinforced panel demonstrates that the thermal-structural behavior is significantly improved. Then, an optimization procedure is carried out to find the lightest design while satisfying thermal deformation and plastic strain constraints, with thicknesses of face sheets and topology parameters of LFM truss as design variables. The optimization result demonstrates that, compared with the non-reinforced actively-cooled panels, weight reduction for the panel reinforced by LFM truss may reach 19.6%. We have also fabricated this type of actively-cooled panel in the laboratory level, and the specimen shows good mechanical behaviors.

2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Stéphane Colin

Accurate modeling of gas microvection is crucial for a lot of MEMS applications (microheat exchangers, pressure gauges, fluidic microactuators for active control of aerodynamic flows, mass flow and temperature microsensors, micropumps, and microsystems for mixing or separation for local gas analysis, mass spectrometers, vacuum, and dosing valves…). Gas flows in microsystems are often in the slip flow regime, characterized by a moderate rarefaction with a Knudsen number of the order of 10−2–10−1. In this regime, velocity slip and temperature jump at the walls play a major role in heat transfer. This paper presents a state of the art review on convective heat transfer in microchannels, focusing on rarefaction effects in the slip flow regime. Analytical and numerical models are compared for various microchannel geometries and heat transfer conditions (constant heat flux or constant wall temperature). The validity of simplifying assumptions is detailed and the role played by the kind of velocity slip and temperature jump boundary conditions is shown. The influence of specific effects, such as viscous dissipation, axial conduction and variable fluid properties is also discussed.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miao Tian ◽  
Jun Li

PurposeThe purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and clothing.Design/methodology/approachOn account of interaction effects of fire and ventilation openings on heat transfer process, a 3D transient computational fluid dynamics model considering the real shape of human body and clothing was developed. The model was validated by comparing heat flux history and distribution with experimental results. Heat transfer modes and fluid flow were investigated under three levels of fire intensity for the microclimate with ventilation openings and closures.FindingsTemperature distribution on skin surface with open microclimate was heavily depended on the heat transfer through ventilation openings. Higher temperature for the clothing with confined microclimate was affected by the position and direction of flames injection. The presence of openings contributed to the greater velocity at forearms, shanks and around neck, which enhanced the convective heat transfer within microclimate. Thermal radiation was the dominant heat transfer mode within the microclimate for garment with closures. On the contrary, convective heat transfer within microclimate for clothing with openings cannot be neglected.Practical implicationsThe findings provided fundamental supports for the ease and pattern design of the improved thermal protective systems, so as to realize the optimal thermal insulation of the microclimate on the garment level in the future.Originality/valueThe outcomes broaden the insights of results obtained from the mesoscale models. Different high skin temperature distribution and heat transfer modes caused by thermal environment and clothing structure provide basis for advanced thermal protective clothing design.


2020 ◽  
Vol 17 (2) ◽  
pp. 61-68
Author(s):  
A.Zh. Turmukhambetov ◽  

The features of convective heat transfer of bodies in a turbulent environment are considered. The results of experimental research by one of the authors are discussed. Experimental data show that the heat transfer of a spherical body is affected by natural convection, the thermo-physical properties of the medium, the tightness of the flow, the turbulent flow regime, etc. Due to these factors, the formula for calculating convective heat transfer, which includes many experimental constants, becomes cumbersome and inconvenient for practical application. The paper presents the results of applying fractal-structural analysis methods to describe experimental data on convective heat exchange of badly streamlined (cylinder and sphere) bodies in a channel. Quantitative relations are obtained that link the intensity of turbulent heat transfer with the criteria for the degree of self-organization.


2014 ◽  
Vol 214 ◽  
pp. 113-120 ◽  
Author(s):  
Andrzej Waindok

The calculation results for the thermal field of the permanent magnet tubular linear actuator (PMTLA) have been presented in the paper. For the analysis of heating, four different mathematical field models have been created and compared. Each of them uses the finite element method (FEM). In the most simplify model only the standard convective heat transfer coefficient has been implemented. In the most sophisticated model, thermal radiation, convective heat transfer and dependence of the coil resistance vs. temperature have been included. In all models the Joule losses have been assumed as the heat source. The numerical models have been verified experimentally with using the infrared camera and by measuring the coil resistance. Using the most precise model, the nominal current value has been determined for PMTLAs with two different permanent magnet types: NdFeB and SmCo. The conclusions are valuable in the designing process of many actuators with permanent magnets.


Sign in / Sign up

Export Citation Format

Share Document