Quantum CFD Simulations for Heat Transfer Applications
Abstract In this paper, computational heat transfer (CHT) equations were solved using the state-of-art quantum computing (QC) technology. The CHT equations can be discretized into a linear equation set, which can be possibly solved by a QC system. The linear system can be characterized by Ax = b. The A matrix in this linear system is a Hermitian matrix. The linear system is then solved by using the HHL algorithm, which is a quantum algorithm to solve a linear system. The quantum circuit requires an Ancilla qubit, clock qubits, qubits for b and a classical bit to record the result. The process of the HHL algorithm can be described as follows. Firstly, the qubit for b is initialized into the phase as desire. Secondly, the quantum phase estimation (QPE) is used to determine the eigenvalues of A and the eigenvalues are stored in clock qubits. Thirdly, a Rotation gate is used to rotate the inversion of eigenvalues and information is passed to the Ancilla bit to do Pauli Y-rotation operation. Fourthly, revert the whole processes to untangle qubits and measure all of the qubits to output the final results for x. From the existing literature, a few 2 × 2 matrices were successfully solved with QC technology, proving the possibility of QC on linear systems [1]. In this paper, a quantum circuit is designed to solve a CHT problem. A simple 2 by 2 linear equation is modeled for the CHT problem and is solved by using the quantum computing. The result is compared with the analytical result. This result could initiate future studies on determining the quantum phase parameters for more complicated QC linear systems for CHT applications.