Examinations Regarding the Sour Gas Resistance of Girth Welds Carried Out on API Grade X80 Seamless Pipe Steel (Heavy Wall)

Author(s):  
Diana Toma ◽  
Jörg Wiebe ◽  
Dorothee Niklasch ◽  
Ashraf Koka

Various accessories such as buckle arrestors and J-lay collars are needed in some cases to successfully lay and secure an offshore pipeline on the sea bed. For such applications the using of high strength seamless pipes in Grade X70 and X80 with heavy wall are necessary. However, there is only small information regarding the welding procedure for such grades in heavy wall dimensions. In comparison to steels used for lower strength level, the chemistry of high strength steel pipes includes higher amounts of micro-alloying elements as well as requires a more complex heat treatment. Due to the higher carbon equivalent these steel grades react more sensitive on heat input during welding. Consequently, the range of welding parameters which ensure suitable mechanical properties has to be adapted. This article presents the results of weldability trials carried out on seamless API X80 heavy wall (> 50mm) line pipe. The welding trials were performed using different preheating temperatures and heat inputs followed by microstructure investigations and mechanical tests of the multilayer welds. The sour gas resistance has to be demonstrated by SSC-tests because it stays challenging to guarantee values below 250 HV10.

Author(s):  
M. Rashid ◽  
L. E. Collins ◽  
Y. Bian

Addition of alloying elements can alter the properties of high-strength linepipe steel. Particularly the addition of Chromium and Molybdenum acts to suppress ferrite nucleation and promote the formation of acicular bainite microstructures and thereby increase the tensile properties of modern linepipe steel. While chemistry is a factor, welding parameters can also be influential and affect the HAZ toughness. The present work compares the effect of C, Cr, and Mo on the girth weld HAZ fracture toughness of X70 in identical welds. Three pipes of size 48″ OD × 0.528″ WT with different combinations of C, Cr, and Mo were produced. Identical welding procedures were employed to produce two girth welds so that a low-C, Cr pipe (CE = 0.238) was joined to a high-C, Cr pipe (CE = 0.268) which in turn was joined to a low-C, Mo pipe (CE = 0.224). By evaluating the HAZ properties on either side of a weld, it was possible to accurately assess chemistry affects on HAZ properties. These girth welds were subjected to different testing for the evaluation of girth weld HAZ impact and fracture toughness. These included all-weld metal and pipe body tensile testing, micro hardness testing of HAZ, microstructure analysis, Charpy V-notch testing of weld metal and HAZ, and CTOD testing of weld metal and HAZ at −5 °C and −20 °C. In addition, to investigate the transformation behaviour, Gleeble simulations of coarse-grain heat affected zone (CG-HAZ) were conducted using skelp samples, which were taken from the same coils as the pipe samples. The results demonstrated that among the low and high carbon equivalent (CE) alloys, materials with low CE values showed better toughness properties. While among the low CE materials, the material with high Mo performed better in terms of toughness. No clear effect of weld position around the pipe circumference on the CTOD values was observed.


Author(s):  
Diana Toma ◽  
Silke Harksen ◽  
Dorothee Niklasch ◽  
Denise Mahn ◽  
Ashraf Koka

The general trend in oil and gas industry gives a clear direction towards the need for high strength grades up to X100. The exploration in extreme regions and under severe conditions, e.g. in ultra deep water regions also considering High Temperature/High Pressure Fields or arctic areas, becomes more and more important with respect to the still growing demand of the world for natural resources. Further, the application of high strength materials enables the possibility of structure weight reduction which benefits to materials and cost reduction and increase of efficiency in the pipe line installation process. To address these topics, the development of such high strength steel grades with optimum combination of high tensile properties, excellent toughness properties and sour service resistivity for seamless quenched and tempered pipes are in the focus of the materials development and improvement of Vallourec. This paper will present the efforts put into the materials development for line pipe applications up to grade X100 for seamless pipes manufactured by Pilger Mill. The steel concept developed by Vallourec over the last years [1,2] was modified and adapted according to the technical requirements of the Pilger rolling process. Pipes with OD≥20″ and wall thickness up to 30 mm were rolled and subsequent quenched and tempered. The supportive application of thermodynamic and kinetic simulation techniques as additional tool for the material development was used. Results of mechanical characterization by tensile and toughness testing, as well as microstructure examination by light-optical microscopy will be shown. Advanced investigation techniques as scanning electron microcopy and electron backscatter diffraction are applied to characterize the pipe material up to the crystallographic level. The presented results will demonstrate not only the effect of a well-balanced alloying concept appointing micro-alloying, but also the high sophisticated and precise thermal treatment of these pipe products. The presented alloying concept enables the production grade X90 to X100 with wall thickness up to 30 mm and is further extending the product portfolio of Vallourec for riser systems for deepwater and ultra-deep water application [1, 3, 4].


Author(s):  
J. A. Gianetto ◽  
J. T. Bowker ◽  
R. Bouchard ◽  
D. V. Dorling ◽  
D. Horsley

The primary objective of this study was to develop a better understanding of all-weld-metal tensile testing using both round and strip tensile specimens in order to establish the variation of weld metal strength with respect to test specimen through-thickness position as well as the location around the circumference of a given girth weld. Results from a series of high strength pipeline girth welds have shown that there can be considerable differences in measured engineering 0.2% offset and 0.5% extension yield strengths using round and strip tensile specimens. To determine whether or not the specimen type influenced the observed stress-strain behaviour a series of tests were conducted on high strength X70, X80 and X100 line pipe steels and two double joint welds produced in X70 linepipe using a double-submerged-arc welding process. These results confirmed that the same form of stress-strain curve is obtained with both round and strip tensile specimens, although with the narrowest strip specimen slightly higher strengths were observed for the X70 and X100 linepipe steels. For the double joint welds the discontinuous stress-strain curves were observed for both the round and modified strip specimens. Tests conducted on the rolled X100 mechanized girth welds established that the round bar tensile specimens exhibited higher strength than the strip specimens. In addition, the trends for the split-strip specimens, which consistently exhibit lower strength for the specimen towards the OD and higher for the mid-thickness positioned specimen has also been confirmed. This further substantiates the through-thickness strength variation that has been observed in other X100 narrow gap welds. A second objective of this study was to provide an evaluation of the weld metal toughness and to characterize the weld metal microstructure for the series of mechanized girth welds examined.


Author(s):  
Sheida Sarrafan ◽  
Farshid Malek Ghaini ◽  
Esmaeel Rahimi

Developments of high strength steels for natural gas pipelines have been in the forefront of steelmaking and rolling technology in the past decades. However, parallel to such developments in steel industry, the welding technology especially with regards to SMAW process which is still widely used in many projects has not evolved accordingly. Decreasing carbon equivalent has shifted the tendency of hydrogen cracking from the HAZ to the weld metal. Hydrogen cracking due to its complex mechanism is affected by a range of interactive parameters. Experience and data gained from field welding of pipeline construction projects indicated that weld metal hydrogen cracking is related to welding position as it occurs more in the 6 o’clock position of pipeline girth welds. In this research an attempt is made to open up the above observation in order to investigate the contributory factors such as welding position and welding progression in terms of diffusible hydrogen and possibly residual stress considerations. It was observed that transverse cracks produced in laboratory condition may not be detected by radiography. But, the higher tendency for cracking at 6 o’clock position was confirmed through bend test. It is shown that more hydrogen can be absorbed by the weld metal in the overhead position. It is shown that welding progression may also have a significant effect on cracking susceptibility and it is proposed that to be due to the way that weld residual stresses are developed. The observations can have an important impact on planning for welding procedure approval regarding prevention of transverse cracking in pipeline girth welds.


Author(s):  
Frank J. Barbaro ◽  
Valerie M. Linton ◽  
Erwin Gamboa ◽  
Leigh Fletcher

The mechanical properties and compositional limits of line pipe for all major pipeline projects are subject to stringent project specific specifications and have substantial user input. The standards for welding electrodes do not have the same level of user involvement and permit significant latitude in terms of alloy design despite the fact that it is known the original electrode design can be markedly altered by elemental transfer as a result of changes in welding parameters and also the condition of the electrodes prior to welding. Several commercially available E8010 consumables have been evaluated under simulated field welding conditions. In addition, the influence of welding arc length and electrode conditioning were investigated. Significant variations in microstructure, hardness and Charpy impact toughness were noted and appear to be primarily related to the final chemical composition of the deposited weld metal. The weld metal carbon equivalent values ranged from 0.20 to 0.42 and all consumables contained additions of Ti and B in the flux coating which resulted in significant levels of B in the final deposited weld metal. It is recommended that the appropriate standards relating to the production and performance of cellulosic consumables be addressed to ensure complete disclosure of consumable formulations to the end user.


Author(s):  
Diego Belato Rosado ◽  
Wim De Waele ◽  
Dirk Vanderschueren ◽  
Stijn Hertelé

In response to the increasing demand to improve both transportation efficiency and performance, the steel pipe industry has conducted extensive efforts to develop line pipe steel grades with superior metallurgical and mechanical (strength, toughness and ductility) properties in order to allow exploitation in hostile environments. This paper aims to give an overview of recent developments of high strength pipe steel grades as API 5L X70 and beyond, providing a detailed understanding of the continuous improvements with respect to a strain-based design context. Information regarding the metallurgy and processing, such as chemical composition, microstructural design, thermo-mechanical controlled process (TMCP) and accelerated cooling process (AcC), to achieve the target strength, ductility and toughness properties are discussed.


Author(s):  
Harpreet Sidhar ◽  
Neerav Verma ◽  
Chih-Hsiang Kuo ◽  
Michael Belota ◽  
Andrew J. Wasson

Abstract The oil and gas industry has seen unexpected failures of sour service carbon steel pipelines in the recent past. Below par performance of girth welds and line pipe material have been identified as the root causes of such failures. Although mechanized welding can achieve good consistency, the weld region is more heterogeneous as compared to base material, which can lead to inconsistencies and poor weld performance. Overall, the effects of welding parameters on performance of carbon steel pipeline girth welds for sour service are not well understood. Furthermore, industry is moving towards more challenging environments, such as production of hydrocarbons from ultra-deepwater, which further necessitates the need to improve welding practices for additional high criticality applications. Many of the critical parameters for sour service performance will also improve general weld performance for ultra-deepwater. So, there is a clear need to understand the effects of various welding parameters on weld properties and performance. This effort aims at assessing the effects of key welding parameters on performance of girth welds to develop improved welding practice guidelines for sour service pipeline applications. In this study, several API X65 grade line pipe girth welds were made using commercially available welding consumables. The effects on weld root performance of preheat, wire consumable chemistry, hot pass tempering, single vs. dual torch, copper backing, root pass heat input, metal transfer mode, pipe fit-up (root gap, misalignment) were studied. Generally, carbon steel welds with hardness 250HV or below are considered acceptable for sour service. So, detailed microhardness mapping and microstructural characterization were conducted to evaluate the performance and reliability of welds. It was evident that the welding parameters studied have a significant impact on root performance. Preheat and pipe fit-up showed the most significant impact on weld root performance. Based on the results and understanding developed with this study, recommendations for industry are provided through this paper to improve reliability of pipeline girth welds in sour service application.


Author(s):  
Hiroyuki Nagayama ◽  
Masahiko Hamada ◽  
Mark F. Mruczek ◽  
Mark Vickers ◽  
Nobuyuki Hisamune ◽  
...  

Ultra-high strength seamless pipes of X90 and X100 grades have been developed for deepwater or ultra-deepwater applications. Girth welding procedure specifications (WPSs) should be developed for the ultra-high strength pipes. However, there is little information for double jointing welding procedure by using submerged arc welding process for high strength line pipes. This paper describes mechanical test results of submerged arc welding (SAW) and gas shielded flux cored arc welding (GSFCAW) trials with various welding consumables procured from commercial markets. Welds were then made with typical welding parameters for riser productions using high strength X90 seamless pipes. The submerged arc weld metal strength could increase by increasing alloy elements in weld metal. The weld metal with CE (IIW) value of 0.74 mass% achieved fully overmatching for the X90 pipe. The weld metal yield strength (0.2% offset) was 694 MPa, and the ultimate tensile strength was 833 MPa. It was also confirmed that the reduction of boron in weld metal can improve low temperature toughness of high strength weld metal. Furthermore, it was confirmed that the HAZ has excellent mechanical properties and toughness for riser applications. In this study GSFCAW procedures were also developed. GSFCAW can be used for joining pipe and connector material for riser production welding. The weld metal with a CE (IIW) value of 0.54 mass% could meet the required strength level for X90-grade pipe as specified in ISO 3183. Cross weld tensile testing showed that fractures were achieved in the base metal. Good Charpy impact properties in weld metal and HAZ were also confirmed.


2021 ◽  
Author(s):  
Sachin Bhardwaj ◽  
R.M. Chandima Ratnayake

Abstract Maintaining minimum allowable distance between proximity welds has always been considered a subject of debate between design engineers, welding engineers/inspectors and fabricators/engineering contractors. The scattered nature of guidelines available in welding codes and standards for maintain minimum allowable distance pose a significant challenge in the welding procedure and inspection criteria development process. This is especially critical for complex welded joints on submerged sections of offshore structures, in compact layouts/branched connections of topside piping components, and on topside structural joints (depending on the complexity). This manuscript presents the findings of an experimental study that was performed by fabricating two girth welds at a proximity on an S355 steel tubular section having diameter of 219.1 mm and thickness of 8.18 mm. Proximity girth welds were fabricated on S355 tubular sections at three different distances between their weld toe as 5, 10 & 15mm respectively using two different welding procedures. Welding procedure qualification record (WPQR) was performed, and all prescribed mechanical tests were recorded as per NORSOK M-101, a structural steel fabrication code. Although all results from mechanical test met minimum specified values as defined in the NORSOK code, research findings revealed noticeable difference in Charpy and hardness values for proximity region between adjacent welds. Considerable changes in final microstructure morphology were observed between proximity welds due to successive thermal cycles. These observations can form basis for future welding procedure qualification of critical welded joints, especially for proximity welds on critical welded joints of offshore structures and welds fabricated during replacement/repair procedures in compact piping layouts.


Sign in / Sign up

Export Citation Format

Share Document