Simplified Method to Assess Dynamic Response of Jacket Type Offshore Platforms Subjected to Wave Loading

Author(s):  
B. Asgarian ◽  
A. Mohebbinejad ◽  
R. H. Soltani

Dynamic response of offshore platforms subjected to wave and current is of fundamental importance in analysis. The first step in dynamic analysis is computing dynamic characteristics of the structure. Because of pile-soil-structure and fluid-structure interactive effects in the dynamic behavior, the model is very complex. In this paper a simplified model for dynamic response of jacket-type offshore structures subjected to wave loading is used. Since wave loads on offshore platforms vary with time, they produce dynamic effects on structures. In the model used in this paper, all of the structural elements are modeled as vertical equivalent cylinders that are in the direction of the wave crest. In the simplified model, the degrees of freedom are considered at the seabed, jacket horizontal elevations and topside center of gravity. The stiffness properties of the model are computed considering the stiffnesses of the vertical bracings, legs and piles. The structural mass is considered as lumped nodal masses at horizontal elevations and topside center of gravity. The hydrodynamic added mass in addition to the structural masses was modeled at jacket horizontal elevations. In the simplified model, for computing wave loading, the projected areas of all members in the direction of the wave crest are considered. For the wave loading calculation, Morison equation is considered. The fluid velocities are calculated for the submerged portions of the structures using a computer program developed for this purpose. In this program both Airy and Stokes wave theories can be used. This model can be used to assess dynamic properties and responses of jacket type offshore structures. The model is used to assess the response of three jacket-type offshore platforms in Persian Gulf subjected to loadings due to several waves. The results in terms of dynamic characteristics and responses were compared with the more accurate analysis results using SACS software. The results are in a good agreement with the SACS analysis outputs, i.e. structural periods, mode shapes and dynamic response.

Author(s):  
Bruna Nabuco ◽  
Marius Tarpø ◽  
Amina Aïssani ◽  
Rune Brincker

Today, many offshore structures in the North Sea already reached their predicted lifetime. Since it is still required a huge demand of oil, it results in an important need to keep those structures in operation. The great attention concerning the lifetime of offshore platforms has trigged a need for monitoring these structures in order to gain information about their actual state and hence reduce the uncertainty and allow for more optimal decision planning regarding maintenance, repair and future inspection actions. Throughout the lifetime, the performance of the structure can be evaluated by analyzing the deterioration process of the structure. In the offshore environment, one of the most common deterioration mechanisms is the fatigue of structural steel induced by wave loading. The deterioration formulation of a structural system subjected to fatigue is nowadays well known. However, many uncertainties may affect the accuracy of the performance evaluation. It can be mentioned mainly the uncertainties related to the materials, the uncertainty on Miner’s rule and the uncertainty on the SN curve but most importantly is the uncertainty on the stress ranges induced by the wave loading. In this paper, the mainly focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known as reliable for long time measurements. An Operational Modal Analysis (OMA) is performed and then a modal filtering of the operating response is considered, so that the modal coordinates of all significant modes are known. Next, the experimental mode shapes are expanded using a Finite Element (FE) model together with the Local Correspondence (LC) principle and the displacements can be estimated in all degrees of freedom of the FE model, allowing the stresses and strains to be obtained from the element equations. It is important to emphasize that even though the accelerations are measured in only a few points of the structure, the stress history can be calculated in any arbitrary point of the structure. The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies.


Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction of the main wind direction can make any direction with the current. Numerical results showing the importance of the water depth, the directional spreading and the current on the conditional mean wave profile and the associated wave kinematics are presented. A discussion of the use of the conditional wave approach as design waves is given.


Author(s):  
Marco A. Souza ◽  
Osvaldo C. Pinto

Abstract A simplified model is used in the nonlinear dynamic analysis of fixed offshore platforms. The characteristics of the model are presented and its adequacy for the study is discussed. The action of ocean waves on the model is obtained using typical waves of the Brazilian coast. The nonlinear equation of motion is obtained in its exact form and is expanded up to the cubic term. A comparison between the nonlinear analysis and the linear dynamic analysis is presented. A comparison between experimental results and those obtained with the model is also presented.


2019 ◽  
Vol 36 (4) ◽  
pp. 1121-1141 ◽  
Author(s):  
Apostolos Koukouselis ◽  
Konstantinos Chatziioannou ◽  
Euripidis Mistakidis ◽  
Vanessa Katsardi

Purpose The design of compliant towers in deep waters is greatly affected by their dynamic response to wave loads as well as by the geometrical and material nonlinearities that appear. In general, a nonlinear time history dynamic analysis is the most appropriate one to be applied to capture the exact response of the structure under wave loading. However, this type of analysis is complex and time-consuming. This paper aims to develop a simplified methodology, which can adequately approximate the maximum response yielded by a dynamic analysis by means of a static analysis. Design/methodology/approach Various types of time history dynamic analysis are first applied on a detailed structural model, ranging from linear to fully nonlinear, that are used as reference solutions. In the sequel, a simplified analysis model is formulated, capable of reproducing the response of the entire structure with significantly reduced computational cost. In the next stage, this model is used to obtain the linear and nonlinear response spectra of the structure. Finally, these spectra are used to formulate a simplified design approach, based on equivalent static loads. Findings This simplified design approach produces good results in cases that the response is mainly governed by the first eigenmode, which is the case when compliant towers are considered. Originality/value The present paper borrows ideas from the area of earthquake engineering, where simplified methodologies can be used for the design of a certain class of structures. However, the development of a simplified methodology for the approximation of the dynamic behavior of offshore structures under wave loading is a much more complex problem, which, to the authors’ knowledge, has not been addressed till now.


Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile. Extensions to higher order waves are finally discussed.


2021 ◽  
Vol 9 (5) ◽  
pp. 526
Author(s):  
Weiyun Chen ◽  
Dan Wang ◽  
Lingyu Xu ◽  
Zhenyu Lv ◽  
Zhihua Wang ◽  
...  

Wave is a common environmental load that often causes serious damages to offshore structures. In addition, the stability for the submarine artificial slope is also affected by the wave loading. Although the landslide of submarine slopes induced by the waves received wide attention, the research on the influence of solitary wave is rare. In this study, a 2-D integrated numerical model was developed to investigate the stability of the foundation trench under the solitary wave loading. The Reynolds-averaged Stokes (RANS) equations were used to simulate the propagation of a solitary wave, while the current was realized by setting boundary inlet/outlet velocity. The pore pressure induced by the solitary wave was calculated by Darcy’s law, and the seabed was characterized by Mohr–Coulomb constitutive model. Firstly, the wave model was validated through the comparison between analytical solution and experimental data. The initial consolidation state of slope under hydrostatic pressure was achieved as the initial state. Then, the factor of stability (FOS) for the slope corresponding to different distances between wave crest and slope top was calculated with the strength reduction method. The minimum of FOS was defined as the stability index for the slope with specific slope ratio during the process of dynamic wave loading. The parametric study was conducted to examine the effects of soil strength parameters, slope ratio, and current direction. At last, the influence of upper slope ratio in a two-stage slope was also discussed.


2014 ◽  
Vol 852 ◽  
pp. 619-623 ◽  
Author(s):  
Xin Yong Liu ◽  
Hong Bin Cui ◽  
Peng Xian Cao ◽  
Xue Chun Bao ◽  
Xin Yu Liu

A simplified model of self-balance screen was constructed by using SolidWorks, and then imported into the Simulation to analysis its structure and modal. The stress distribution, deformation and structural natural frequency, mode shapes under static loads of the self-balance vibrating screen were calculated to provide theoretical basis for the following analysis of the dynamic characteristics and structure optimization design of vibrating screen.


Author(s):  
K. Kuntiyawichai ◽  
S. Chucheepsakul ◽  
M. M. K. Lee

The principal aim of this paper is to study the dynamic behaviour of offshore platforms subjected to wave loading. A general review of offshore structure, wave loading and their effects on offshore structures are presented. A brief review on the basics of Wavelet analysis is also mentioned in this study. The techniques for modeling wave loading in finite element analyses are described and discussed in detail. A series of 3D analyses were carried out using the ABAQUS finite element software to study the effects on the dynamic response of the change in support conditions at the seabed. The effects of wave height, wave period and wave velocity on platform behaviour were studied. The results from time history analysis are characterized using Wavelet Analysis in order to obtain the response pattern due to wave loading. These analyses allow the frequency response of the jacket structures to be described in the time domain. These results give a clear view on the response of jacket structure. The important parameters on offshore modeling have also been identified and discussed in this paper. The results presented in this study can be used as a guidance for engineer in order to understand the dynamic behaviour of jacket structures subjected to wave loading.


Author(s):  
Jalal Mirzadehniasar ◽  
Mehrdad Kimiaei ◽  
Mark J. Cassidy

Deterministic waves with uniquely specified parameters remains widely used in the analysis of offshore platforms, even though the random nature of the sea-state is one of the main uncertainties in loading. The response of dynamically sensitive and highly redundant structures is significantly changed when random wave loading is considered. Therefore, to more confidently simulate wave loads, all of the randomness of water surface should be taken into account. Load history also plays an important role in the nonlinear dynamic response of structures. Accordingly, an appropriate way to consider these effects is dynamic analysis of offshore platforms using random time-domain generation of the sea surface over a long period of time. However, in general, this method is very complex and time consuming. Constrained NewWave theory is an alternative method that can effectively simulate many hours of random time domain simulation for wave loading but in a more computationally efficient manner. It takes a NewWave — a deterministic wave of predetermined height that accounts for the spectral composition of the sea — and constrains it within a random background. In this paper, both the singular NewWave and multiple constrained NewWaves are employed to simulate random sea-states in order to investigate the nonlinear dynamic response and collapse mechanisms of a jack-up platform subjected to extreme waves. Different assumptions of the behavior of the jack-up spudcan-soil interaction are considered.


2021 ◽  
Vol 9 (9) ◽  
pp. 1027
Author(s):  
Nurul Uyun Azman ◽  
Mohd Khairi Abu Husain ◽  
Noor Irza Mohd Zaki ◽  
Ezanizam Mat Soom ◽  
Nurul Azizah Mukhlas ◽  
...  

The structural integrity of offshore platforms is affected by degradation issues such as subsidence. Subsidence involves large settlement areas, and it is one of the phenomena that may be experienced by offshore platforms throughout their lives. Compaction of the reservoir is caused by pressure reduction, which results in vertical movement of soils from the reservoir to the mud line. The impact of subsidence on platforms will lead to a gradually reduced wave crest to deck air gap (insufficient air gap) and cause wave-in-deck. The wave-in-deck load can cause significant damage to deck structures, and it may cause the collapse of the entire platform. This study aims to investigate the impact of wave-in-deck load on structure response for fixed offshore structure. The conventional run of pushover analysis only considers the 100-year design crest height for the ultimate collapse. The wave height at collapse is calculated using a limit state equation for the probabilistic model that may give a different result. It is crucial to ensure that the reserve strength ratio (RSR) is not overly estimated, hence giving a false impression of the value. This study is performed to quantify the wave-in-deck load effects based on the revised RSR. As part of the analysis, the Ultimate Strength for Offshore Structures (USFOS) software and wave-in-deck calculation recommended by the International Organization for Standardization (ISO) as practised in the industry is adopted to complete the study. As expected, the new revised RSR with the inclusion of wave-in-deck load is lower and, hence, increases the probability of failure (POF) of the platform. The accuracy and effectiveness of this method will assist the industry, especially operators, for decision making and, more specifically, in outlining the action items as part of their business risk management.


Sign in / Sign up

Export Citation Format

Share Document