Effect of Spatial Variation of a Wave Field on the Resulting Ripple Characteristics and Comparison to Present Ripple Predictors

Author(s):  
Blake J. Landry ◽  
Yovanni A. Catan˜o-Lopera ◽  
Matthew J. Hancock ◽  
Chiang C. Mei ◽  
Marcelo H. Garci´a

Laboratory experiments analyzed herein focus on the validity of ripple predictors under spatially variable wave envelopes. Present-day ripple predictors commonly derived from laboratory data (for smaller wave periods of about 1 to 4 s) within which only small regions of the facilities were used to observe and measure the sand ripple geometric characteristics of the nearly progressive waves measured overhead. When extended to large sediment test sections, our results show that the predictors are still valid along the tank under wave conditions which have significant wave envelope spatial variation (e.g., standing waves), provided that ripple predictors use the wave measurements directly above the respective locations within the computations. Results indicate that even under the case of mild reflection, noticeable variation in ripple characteristics can be seen along the sediment test section; thus, compels the necessity of measuring the wave field along the entire sediment section to achieve accurate results.

1980 ◽  
Vol 101 (1) ◽  
pp. 179-200 ◽  
Author(s):  
Norden E. Huang ◽  
Steven R. Long

Laboratory experiments were conducted to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data together with some limited field data were compared. It is found that the skewness of the surface elevation distribution is proportional to the significant slope of the wave field, §, and all the laboratory and field data are best fitted by \[ K_3 = 8\pi\S, \] with § defined as ($(\overline{\zeta^2})^{\frac{1}{2}}/\lambda_0 $, where ζ is the surface elevation, and λ0 is the wavelength of the energy-containing waves. The value of K3 under strong wind could reach unity. Even under these highly non-Gaussian conditions, the distribution can be approximated by a four-term Gram-Charlier expansion. The approximation does not converge uniformly, however. More terms will make the approximation worse.


Author(s):  
Eirini Spentza ◽  
Chris Swan

This paper concerns the nonlinear interaction of waves with a floating vessel. A detailed experimental study has been undertaken in a 3-D wave basin, using a scaled model tanker subject to a variety of incident wave conditions. The vessel, which is free to move in heave, pitch and roll, has a draft of 14m (at full-scale) and is subject to a range of incident wave periods propagating at right angles to the side shell of the vessel. Measurements undertaken with and without the vessel in place allow the diffracted-radiated wave field to be identified. The laboratory data indicate that the diffracted-radiated wave pattern varies significantly with the incident wave period. Detailed analysis of the experimental results has identified a hitherto unexpected second-order freely propagating wave harmonic generated due to the presence of the vessel. Given its frequency content and its relatively slow speed of propagation, this harmonic leads to a significant steepening of the wave field around the vessel and therefore has an important role to play in terms of the occurrence of wave slamming. Physical insights are provided concerning the latter and the practical implications of the overall wave-structure interactions are considered.


2021 ◽  
Author(s):  
Juan Manuel Leon ◽  
Shehadeh K. Masalmeh ◽  
Siqing Xu ◽  
Ali M. AlSumaiti ◽  
Ahmed A. BinAmro ◽  
...  

Abstract Assessing polymer injectivity for EOR field applications is highly important and challenging. An excessive injectivity reduction during and after polymer injection may potentially affect the well integrity and recovery efficiency and consequently, injection strategy and the economics of the polymer projects. Moreover, well conditions such as skin, completion configuration, and injection water quality can significantly impact polymer injectivity. Additionally, the presence of fractures or micro-fractures may govern injection pressure. In contrast, historic field applications have shown that polymer injectivity is in general better than expected from simulations or laboratory data. In the laboratory experiments, the polymer injectivity has been evaluated by injection of significant amounts of pore volumes of polymer at relevant well-injection rates. In addition, several experiments were performed to measure the complex in-situ rheology expected to dominate the flow near the wellbore This paper presents the analysis of the the world's first polymer injectivity test (PIT) conducted in a high temperature and high salinity (HTHS) carbonate reservoir in Abu Dhabi as part of a comprehensive de-risking program for a new polymer-based EOR scheme proposed by ADNOC for these challenging carbonate reservoirs (see Masalmeh et. al., 2014). The de-risking program includes an extensive laboratory experimental program and field injectivity test to ensure that the identified polymer can be injected and propagated in the target formation before multi-well pilot and full-field implementation stages. Experimental laboratory data and the field injectivity test results are presented in earlier publications (Masalmeh et. al., 2019; Rachapudi et. al., 2020) and references therein. This PIT is the world's first polymer injectivity test in a carbonate reservoir under such harsh conditions of high salinity, high content of divalent ions and high temperature. In addition, the polymer used during the test has never been field-tested before. Therefore, the results of the PIT interpretation will help to de-risk the suitable polymer for the future inter-well pilot for the new proposed EOR Polymer-based scheme and it is a game-changer to unlock several opportunities for different Chemical EOR applications on full-field scale in other reservoirs with similar characteristics. A single well radial simulation model was built to integrate the surveillance data during PIT and the extensive laboratory experiments. Morever, multiple Pressure Fall Off Tests (PFOs) during the same periods were analyzed and intergaretd in the model.The study assessed the effect of polymer viscosity on mobility reduction, evaluated the polymer bank propagation, investigated the effect of the skin build-up, residual resistance factor (RRF) and shear effects on the well injectivity. Additionally, a comprehensive assisted history match method and robust simulation sensitivity analysis was implemented, thousands of sensitivity simulation runs were performed to capture several possible injection scenarios and validate laboratory parameters. The simulation study confirmed that the PIT could be interpreted using the laboratory-measured polymer parameters such as polymer bulk viscosity, in-situ rheology, RRF and adsorption.


Author(s):  
Thomas B. Johannessen

Abstract The present paper is concerned with the accurate prediction of nonlinear wave kinematics underneath measured time histories of surface elevation. It is desired to develop a method which is useful in analysis of offshore measurements close to wind turbine foundations. The method should therefore be robust in relatively shallow water and should be able to account for the presence of the foundation and the shortcrestedness of offshore seastates. The present method employs measurements of surface elevation time histories at one or a small number of locations and solves the associated velocity potential by minimizing the error in the free surface boundary conditions. The velocity potential satisfies exactly Laplace’s equation, the bed boundary condition and (optionally) the boundary condition on the wall of a uniform surface piercing column. This is achieved by associating one wavenumber with every wave frequency thereby sacrificing the possibility of following the nonlinear wave evolution but ensuring a good description of the wave properties locally. For shortcrested waves, the direction of wave component propagation is drawn from a known or assumed directional spectrum. No attempt is made to calculate the directional distribution of the wave field from the surface elevation measurements since this is usually not realistically possible with the available data. The method is set up for analysis with or without a uniform current, for shortcrested or longcrested waves and with or without a surface piercing column in the wave field. It has been compared with laboratory data for steep longcrested and shortcrested waves. The method is shown to be in good agreement with measurements. Since the method is based on a Fourier series of surface elevation, however, it cannot model overtopping breaking waves and associated wave impact loading. For problems where wave breaking is important, the method may serve as a screening analysis used to select wave events for detailed analysis using Computational Fluid Dynamics (CFD).


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T123-T139
Author(s):  
Bence Solymosi ◽  
Nathalie Favretto-Cristini ◽  
Vadim Monteiller ◽  
Paul Cristini ◽  
Bjørn Ursin ◽  
...  

Laboratory experiments have been recently reintroduced into the ideas-to-applications pipeline for geophysical applications. Benefiting from recent technological advances, we believe that in the coming years, laboratory experiments can play a major role in supporting field experiments and numerical modeling, to explore some of the current challenges of seismic imaging in terms of, for instance, acquisition design or benchmarking of new imaging techniques at a low cost and in an agile way. But having confidence in the quality and accuracy of the experimental data obtained in a complex configuration, which mimics at a reduced scale a real geologic environment, is an essential prerequisite. This requires a robust framework regardless of the configuration studied. Our goal is to provide a global overview of this framework in the context of offshore seismics. To illustrate it, a reduced-scale model is used to represent a 3D complex-shaped salt body buried in sedimentary layers with curved surfaces. Zero-offset and offset reflection data are collected in a water tank, using a conventional pulse-echo technique. Then, a cross-validation approach is applied, which allows us, through comparison between experimental data and the numerical simulation, to point out some necessary future improvements of the laboratory setup to increase the accuracy of the experimental data, and the limitations of the numerical implementation that must also be tackled. Due to this approach, a hierarchical list of points can be collected, to which particular attention should be paid to make laboratory experiments an efficient tool in seismic exploration. Finally, the quality of the complex reduced-scale model and the global framework is successfully validated by applying reverse time migration to the laboratory data.


1996 ◽  
Vol 322 ◽  
pp. 1-19 ◽  
Author(s):  
M. Ioualalen ◽  
A. J. Roberts ◽  
C. Kharif

A numerical study of the superharmonic instabilities of short-crested waves on water of finite depth is performed in order to measure their time scales. It is shown that these superharmonic instabilities can be significant-unlike the deep-water case-in parts of the parameter regime. New resonances associated with the standing wave limit are studied closely. These instabilities ‘contaminate’ most of the parameter space, excluding that near two-dimensional progressive waves; however, they are significant only near the standing wave limit. The main result is that very narrow bands of both short-crested waves ‘close’ to two-dimensional standing waves, and of well developed short-crested waves, perturbed by superharmonic instabilities, are unstable for depths shallower than approximately a non-dimensional depth d= 1; the study is performed down to depth d= 0.5 beyond which the computations do not converge sufficiently. As a corollary, the present study predicts that these very narrow sub-domains of short-crested wave fields will not be observable, although most of the short-crested wave fields will be.


Author(s):  
Arthur Stanley Eddington

1- The "ordinary" formula for the minimum electron pressure P corresponding to an electron density σ is of form P = Kσ. It has been generally accepted that this is a non-relativistic approximation, applying only to slow-moving electrons; and a "relativistic" formula has been given, intended to take account of change of mass with velocity. In a recent paper I have contended that the "ordinary" formula is the exact relativistic solution of the problem, and that the "relativistic" formula rests on a misconception. Since a decision on this point has far-reaching consequences in the theory of dense stars, and, moreover, has a fundamental bearing on the union of quantum theory with relativity theory, it has seemed desirable to supplement my earlier paper. I think the earlier paper makes it clear that whether the "relativistic" formula is right or wrong, existing proofs of it cannot be accepted. Briefly, the fallacy lies in the fact that the cell-divison of phase space is obtained by standing waves , but these are assigned an energy which has been derived for progressive waves . If this is not simply a mistake, it is a step which requires careful justification; and up to the present no one seems to have given any reason why one should assume that the energy or hamiltonian of standing waves is the same as that of pro-gressive waves. We may recall that the energy of plane progressive waves is easily calculated, because by a Lorentz transformation they are converted into waves advancing along the time-axis, and the energy is then the rest-energy of the particle; if the Lorentz transformation is applied to standing waves no such simplification results, and the reduction of the particle to rest involves an involves an altogether different type of transformation.


1992 ◽  
Vol 40 (3) ◽  
pp. 327 ◽  
Author(s):  
DJ Rae ◽  
RE Jones

Nitrogen levels in commercial plots of sugarcane varied over the cane-growing season. However, when adjusted for seasonal effects, nitrogen did not have a detectable effect on the size of mealybug populations on cane. In laboratory experiments, the survival of immature Saccharicoccus sacchari and the size attained at the onset of the oviposition period was influenced by the level of nitrogen fertiliser applied to potted sugarcane. Survival of S. sacchari increased to a maximum at 320 mg L-1 soluble nitrogen in sugarcane and decreased at higher levels, while size increased with increased nitrogen over the whole range of concentrations tested. Nitrogen-driven changes in the abundance of S. sacchari predicted from laboratory data indicate that normal variations in nitrogen concentrations of field-grown sugarcane have little effect on the population dynamics of S. sacchari.


2021 ◽  
Author(s):  
Kun Wang ◽  
Christopher Johnson ◽  
Kane Bennett ◽  
Paul Johnson

Abstract Data-driven machine-learning for predicting instantaneous and future fault-slip in laboratory experiments has recently progressed markedly due to large training data sets. In Earth however, earthquake interevent times range from 10's-100's of years and geophysical data typically exist for only a portion of an earthquake cycle. Sparse data presents a serious challenge to training machine learning models. Here we describe a transfer learning approach using numerical simulations to train a convolutional encoder-decoder that predicts fault-slip behavior in laboratory experiments. The model learns a mapping between acoustic emission histories and fault-slip from numerical simulations, and generalizes to produce accurate results using laboratory data. Notably slip-predictions markedly improve using the simulation-data trained-model and training the latent space using a portion of a single laboratory earthquake-cycle. The transfer learning results elucidate the potential of using models trained on numerical simulations and fine-tuned with small geophysical data sets for potential applications to faults in Earth.


Author(s):  
Alfred R. Osborne

Abstract This paper addresses two issues with regard to nonlinear ocean waves. (1) The first issue relates to the often-confused differences between the coordinates used for the measurement and characterization of ocean surface waves: The surface elevation and the complex modulation of a wave field. (2) The second issue relates to the very different kinds of physical wave behavior that occur in shallow and deep water. Both issues come from the known, very different behaviors of deep and shallow water waves. In shallow water one often uses the Korteweg-deVries that describes the wave surface elevation in terms of cnoidal waves and solitons. In deep water one uses the nonlinear Schrödinger equation whose solutions correspond to the complex envelope of a wave field that has Stokes wave and breather solutions. Here I make clear the relationships between the two ways of characterizing surface waves. Furthermore, and more importantly, I address the issues of matching the two types of wave behavior as the wave motion passes from deep to shallow water, or vice versa. For wave measurements we normally obtain the surface elevation with a wave staff, resistance gauge or pressure recorder for getting time series. Remote sensing applications relate to the use of lidar, radar or synthetic aperture radar for obtaining space series. The two types of wave behavior can therefore crucially depend on where the instrument is placed on the “ground track” or “field” over which the lidar or radar measurements are made. Thus the matching problem from deep to shallow water is not only important for wave measurements, but also for wave modeling. Modern wave models [Osborne, 2010, 2018, 2019a, 2019b] that maintain the coherent structures of wave dynamics (solitons, Stokes waves, breathers, superbreathers, vortices, etc.) must naturally pass from deep to shallow water where the nature of the nonlinear physics, and the form of the coherent structures, change. I address these issues and more herein. This paper is directed towards the development of methods for the real time measurement of waves by shipboard radar and for wave measurements by airplane and helicopter using lidar and synthetic aperture radar. Wave modeling efforts are also underway.


Sign in / Sign up

Export Citation Format

Share Document