Fracture Toughness Evaluation for Welded Joints of High Strength Steel Through CTOD Test

Author(s):  
Jin Gan ◽  
Qiming Yu ◽  
Weiguo Wu ◽  
Jingxia Le

This paper presents the method and procedure of CTOD test which are used for the toughness evaluation for welded joints. Two types of high strength steel (E38 and E43) are chosen as the object of fracture toughness evaluation. The contents of CTOD test include three-point crack tip open displacement (CTOD) bending tests for base metal (BM) specimens, weld position (WP) specimens and heat-affected zone (HAZ) specimens of the high strength steel, considering different thickness of steel plate and different test temperature (−20°C and 20°C). The CTOD test can achieve the P-V curves of samples, and the CTOD values are calculated. On the basis of the above work, the results of toughness evaluation are obtained. Meanwhile, some factors which affect the toughness of high strength steel are discussed in this paper, such as thickness of steel plate and test temperature, and many valuable conclusions are achieved.

Author(s):  
Moritz Braun ◽  
Aleksandar-Saša Milaković ◽  
Sören Ehlers ◽  
Adrian Kahl ◽  
Tom Willems ◽  
...  

Abstract Ships and offshore structures operating in Artic regions face specific challenges such as ice loads and seasonal low temperatures. In order to meet these extreme environmental requirements, the effect of temperature on material behaviour needs to be considered. It is well known that static material properties (yield strength, fracture toughness etc.) undergo significant changes with temperature. In recent studies, significantly higher fatigue strength was observed in welded joints in comparison to estimates based on international standards. Fatigue strength increased even for temperatures far below the allowed service temperature based on fracture toughness results; however, studies on fatigue strength of structural steel at sub-zero temperatures are scarce. Moreover, material selection for ships and offshore structures is usually based on empirical Charpy and fracture toughness relations at the design temperature, minus a safety margin. This study aims at introducing an S-N curve database for welded joints that can be used to verify the fatigue design approaches for ships and offshore structures subject to sub-zero temperatures. Therefore, the effect of temperature on the fatigue strength of butt-welded normal and high strength steel structures is analysed experimentally for sub-zero temperatures. For this purpose, fatigue test results of SAW and MAG welded joints for temperatures down to −50 °C are analysed and the potential for changes regarding material selection for ships and offshore structures are discussed.


2018 ◽  
Vol 60 (11) ◽  
pp. 1077-1083 ◽  
Author(s):  
Zhaoming Zhou ◽  
Xishui Guo ◽  
Tiejun Lin ◽  
Desen Mao

Alloy Digest ◽  
2014 ◽  
Vol 63 (3) ◽  

Abstract Swebor 400 (hardness 400 HBW) is a high-strength steel with good wear resistant qualities. This alloy is used to endure conditions of extra-heavy wear and when great strength and good weldability is required. This datasheet provides information on composition, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: CS-181. Producer or source: Swebor Stål Svenska AB.


Alloy Digest ◽  
1990 ◽  
Vol 39 (4) ◽  

Abstract ASTM A710 is a low-carbon, precipitation hardening high-strength alloy steel plate. It is well suited to critical applications. This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on heat treating and joining. Filing Code: SA-446. Producer or source: Bethlehem Steel Corporation.


Alloy Digest ◽  
2003 ◽  
Vol 52 (5) ◽  

Abstract Domex 110XF is a very-high-strength steel that is used for automotive and civil engineering structural components. This datasheet provides information on composition, physical properties, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on heat treating and joining. Filing Code: SA-512. Producer or source: SSAB Swedish Steel Inc.


Alloy Digest ◽  
1962 ◽  
Vol 11 (5) ◽  

Abstract Crucible D6 is a low alloy ultra-high strength steel developed for aircraft-missile applications and primarily designed for use in the 260,000-290,000 psi tensile strength range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-129. Producer or source: Crucible Steel Company of America.


Sign in / Sign up

Export Citation Format

Share Document