Offshore Platform Fluid Structure Interaction Simulation

Author(s):  
Ali Marzban ◽  
Murthy Lakshmiraju ◽  
Nigel Richardson ◽  
Mike Henneke ◽  
Guangyu Wu ◽  
...  

In this study a one-way coupled fluid-structure interaction (FSI) between ocean waves and a simplified offshore platform deck structure was modeled. The FSI model consists of a Volume of Fluid (VOF) based hydrodynamics model, a structural model and an interface to synchronize data between these two. A Computational Fluid Dynamics (CFD) analysis was used to capture the breaking wave and impact behavior of the fluid on the structure using commercially available software STAR-CCM+. A 3D Finite Element (FE) model of the platform deck developed in ABAQUS was used to determine the deflection of the structure due to hydrodynamic loads. Nonlinear material behavior was used for all structural parts in the FE model. Transient dynamic structural analysis and CFD analysis were coupled by transferring the CFD-predicted pressure distribution to the structural part in each time step using the co-simulation capabilities of STAR-CCM+ and ABAQUS. The one-way FSI model was applied to investigate the possible physical causes of observed wave damage of an offshore platform deck during a hurricane. It was demonstrated that with proper physical conditions/configurations, the FSI model could reproduce a structural deformation comparable to field measurement and provide valuable insight for forensic analysis.

Author(s):  
Prabu Ganesh Ravindren ◽  
Kirti Ghia ◽  
Urmila Ghia

Recent studies of the joined-wing configuration of the High Altitude Long Endurance (HALE) aircraft have been performed by analyzing the aerodynamic and structural behaviors separately. In the present work, a fluid-structure interaction (FSI) analysis is performed, where the fluid pressure on the wing, and the corresponding non-linear structural deformation, are analyzed simultaneously using a finite-element matrix which couples both fluid and structural solution vectors. An unsteady, viscous flow past the high-aspect ratio wing causes it to undergo large deflections, thus changing the domain shape at each time step. The finite element software ANSYS 11.0 is used for the structural analysis and CFX 11.0 is used for the fluid analysis. The structural mesh of the semi-monocoque joined-wing consists of finite elements to model the skin panel, ribs and spars. Appropriate mass and stress distributions are applied across the joined-wing structure [Kaloyanova et al. (2005)], which has been optimized in order to reduce global and local buckling. The fluid region is meshed with very high mesh density at the fluid-structure interface and where flow separation is predicted across the joint of the wing. The FSI module uses a sequentially-coupled finite element equation, where the main coupling matrix utilizes the direction of the normal vector defined for each pair of coincident fluid and structural element faces at the interface [ANSYS 11.0 Documentation]. The k-omega turbulence model captures the fine-scale turbulence effects in the flow. An angle of attack of 12°, at a Mach number of 0.6 [Rangarajan et al. (2003)], is used in the simulation. A 1-way FSI analysis has been performed to verify the proper transfer of loads across the fluid-structure interface. The CFX pressure results on the wing were transferred across the comparatively coarser mesh on the structural surface. A maximum deflection of 16 ft is found at the wing tip with a calculated lift coefficient of 1.35. The results have been compared with the previous study and have proven to be highly accurate. This will be taken as the first step for the 2-way simulation. The effect of a coupled 2-way FSI analysis on the HALE aircraft joined wing configuration will be shown. The structural deformation history will be presented, showing the displacement of the joined-wing, along the wing span over a period of aerodynamic loading. The fluid-structure interface meshing and the convergence at each time step, based on the quantities transferred across the interface will also be discussed.


Author(s):  
M. Benaouicha ◽  
S. Guillou ◽  
A. Santa Cruz ◽  
H. Trigui

The study deals with a 3D Fluid-Structure Interaction (FSI) numerical model of a rectangular cantilevered flexible hydrofoil subjected to a turbulent fluid flow regime. The structural response and dynamic deformations are studied by analyzing the oscillations frequencies and amplitudes, under a hydrodynamics loads. The obtained numerical results are confronted with experimental ones, for validation. The numerical model is performed in the same geometric, physical and material conditions as the experimental set-up carried out in a hydrodynamic tunnel. A polyacetal (POM) flexible hydrofoil NACA0015 with an angle of attack of 8° is considered to be immersed in a fluid flow at a Reynold number of 3 × 105. The structure is initially at rest and then moved by the action of the fluid flow. The numerical model is based on a strong coupling procedure for solving the Fluid-Structure Interaction problem. The Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations is used and an anisotropic diffusion equation is solved to compute the fluid mesh velocity and position at each time step. The finite volume method is used for the numerical resolution of the fluid dynamics equations. The structure deformations are described by the linear elasticity equation which is solved by the finite elements method. The Fluid-Structure coupled problem is solved by using the partitioned FSI implicit algorithm. A good agreement between numerical and experimental results for the hydrodynamics coefficients and hydrofoil deformations, maximum deflection and frequencies is obtained. The added mass and damping are analyzed and then the FSI effect on the dynamic deformations of the structure is highlighted.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 94 ◽  
Author(s):  
Cornel Marius Murea

A monolithic semi-implicit method is presented for three-dimensional simulation of fluid–structure interaction problems. The updated Lagrangian framework is used for the structure modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations, we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the interface is automatically satisfied by using globally continuous finite element for the velocity in the fluid–structure mesh. The method is fast because we solve only a linear system at each time step. Three-dimensional numerical tests are presented.


Author(s):  
T. Liaghat ◽  
F. Guibault ◽  
L. Allenbach ◽  
B. Nennemann

Fluid-structure interaction (FSI) and unavoidable vibrations are important characteristics in the operation of hydropower structures and must be taken into account in the analysis and design of such equipment. Hydrodynamic damping influences the amplitude of vibrations and is directly related to fatigue problems in hydraulic machines which are of great importance. The aim of this study is to investigate the coupled effects of flowing fluid on a simplified hydrofoil by using three-dimensional two-way fluid-structure interaction modeling, in order to determine its importance in predicting vibration amplitudes and damping. The effect of considering different flow velocities is also investigated in the present study. The results of this research are compared with those obtained from experiments done by ANDRITZ [1]. The influences of mesh size and time step are also studied. Our results indicate that considering FSI in predicting the frequencies of the fluctuating fluid forces in practical problems might be ignored if the main concern of the analysis is to check the possibility of resonance. However, FSI must be included in the modeling when we aim to predict the influence of the fluid on the damping behavior in the hydrofoil vibration.


Author(s):  
N. Aquelet ◽  
H. Lesourne ◽  
M. Souli

A methodology to predict the capacity of a nuclear submarine hull to act as a protective container and energy absorber under impact by an another underwater structure is needed. Principia Marine, company of Research in Shipbuilding (formerly IRCN, Institut de Recherche en Construction Navale), is responding to this need by developing an underwater impact crash prediction methodology based upon LS-DYNA3D software. Several physical phenomena with their own characteristic times follow one another at the time of the shock. So different but complementary tasks to develop this methodology were worked individually. This paper deals with contribution to this ongoing program that breaks up into two objectives. The first goal aims to highlight the effect of water on the structural deformation at the time of the collision between a nuclear submarine and a tanker ram bow, which is generally plane. The two-dimensional modelling of this collision uses an Eulerian formulation for the fluid and a Lagrangian formulation for the structure. The fluid-structure interaction is treated by an Euler/Lagrange penalty coupling. This method of coupling, which makes it possible to transmit the efforts in pressure of the Eulerian grid to the Lagrangian grid and conversely, is relatively a recent algorithmic development. It was successfully used in many scientific and industrial applications: the modelling of the attack of birds on the fuselage of a Jet for the Boeing Corporation, the underwater explosion shaking the oil platforms, and airbag simulation… The requirements of modelling for this algorithm are increasingly pointed. Thus, the second objective of this paper is to compare the results in pressures and velocities near the bulb for two cases, in the first one, the bulb is modelled by a slip boundary condition, in the second one, the bulb is a rigid Lagrangian structure, which involves the use of the Euler/Lagrange penalty coupling.


Author(s):  
A. R. M. Gharabaghi ◽  
A. Arablouei ◽  
A. Ghalandarzadeh ◽  
K. Abedi

The dynamic response of gravity type quay wall during earthquake including soil-sea-structure interaction is calculated using ADINA finite element techniques. The main objective of this study is to investigate the effects of fluid-structure interaction on the residual displacement of wall after a real earthquake. A direct symmetric coupled formulation based on the fluid velocity potential is used to calculate the nonlinear hydrodynamic pressure of sea water acting on the wall. The doubly asymptotic approximation (DAA) is used to account for the effects of outer fluid on the inner region. The non-associated Mohr-Coulomb material behavior is applied to model the failure of soil. The full nonlinear effective stress analysis is performed in this study and the soil-pore fluid interaction effects are modeled using porous media formulation. Viscous boundary condition is implemented to model the artificial boundary in direct method analysis of soil-structure interaction system and sliding contact condition was modeled in the interface of wall and surrounding soil. A typical configuration of gravity quay wall is used for analysis and three real earthquakes excitation are applied as base acceleration. The results show that influence of fluid-structure interaction effects on the permanent displacement of a gravity quay wall constructed on relatively non-liquefiable site is not considerable.


Author(s):  
Miroslav Mijajlović ◽  
Sonja Vidojković ◽  
Dušan Ćirić ◽  
Dragan Marinković

This paper deals with modeling, discretization, and numerical analysis of the two-way fluid-structure interaction between a fishing wobbler and a water stream. The structural domain is an assembly of several bodies that have multiple mutual structure-to-structure interactions. These interactions are mostly nonlinear contacts that significantly influence the time step used in simulations. As a result of these nonlinearities, the numerical solving of such a model requires significant computer resources and a long computational time. The paper also presents the creation and numerical simplifications of the model. However, the model remains very realistic. It is concluded that solving the structural domain in a model that retains the interaction between solid bodies is more computationally sensitive and more demanding than solving the fluid domain.


Author(s):  
Wentao Ma ◽  
Xuning Zhao ◽  
Kevin Wang

Abstract Shock waves from underwater and air explosions are significant threats to surface and underwater vehicles and structures. Recent studies on the mechanical and thermal properties of various phase-separated elastomers indicate the possibility of applying these materials as a coating to mitigate shock-induced structural failures. To demonstrate this approach and investigate its efficacy, this paper presents a fluid-structure coupled computational model capable of predicting the dynamic response of air-backed bilayer (i.e. elastomer coating – metal substrate) structures submerged in water to hydrostatic and underwater explosion loads. The model couples a three-dimensional multiphase finite volume computational fluid dynamics model with a nonlinear finite element computational solid dynamics model using the FIVER (FInite Volume method with Exact multi-material Riemann solvers) method. The kinematic boundary condition at the fluid-structure interface is enforced using an embedded boundary method that is capable of handling large structural deformation and topological changes. The dynamic interface condition is enforced by formulating and solving local, one-dimensional fluid-solid Riemann problems, which is well-suited for transferring shock and impulsive loads. The capability of this computational model is demonstrated through a numerical investigation of hydrostatic and shock-induced collapse of aluminum tubes with polyurea coating on its inner surface. The thickness of the structure is resolved explicitly by the finite element mesh. The nonlinear material behavior of polyurea is accounted for using a hyper-viscoelastic constitutive model featuring a modified Mooney-Rivlin equation and a stress relaxation function in the form of prony series. Three numerical experiments are conducted to simulate and compare the collapse of the structure in different loading conditions, including a constant pressure, a fluid environment initially in hydrostatic equilibrium, and a two-phase fluid flow created by a near-field underwater explosion.


Sign in / Sign up

Export Citation Format

Share Document