Mean Wave Drift Force on a Barge-Type Floating Wind Turbine With Moonpools

2021 ◽  
Author(s):  
Lei Tan ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract The barge-type foundation with moonpool(s) is a promising type of platform for floating offshore wind turbines, since the moonpool(s) could improve the hydrodynamic performance at particular frequencies and reduce the costs of construction. In this paper, the horizontal mean drift force and yaw drift moment of a barge-type platform with four moonpools are numerically and experimentally investigated. Physical model tests are carried out in a wave tank, where a 2MW vertical-axis wind turbine is modelled in the 1:100 scale. By varying the rotating speed of the turbine and the mass of the blades, the gyroscopic effects due to turbine rotations on the mean drift forces are experimentally examined. The wave diffraction and radiation code WAMIT is used to carry out numerical analysis of wave drift force and moment. The experimental results indicate that the influence of the rotations of a vertical-axis wind turbine on the sway drift force is generally not very significant. The predictions by WAMIT are in reasonable agreement with the measured data. Numerical results demonstrate that the horizontal mean drift force and yaw drift moment at certain frequencies could be reduced by moonpool(s).

2018 ◽  
Vol 42 (2) ◽  
pp. 97-107 ◽  
Author(s):  
D Cevasco ◽  
M Collu ◽  
CM Rizzo ◽  
M Hall

Despite several potential advantages, relatively few studies and design support tools have been developed for floating vertical axis wind turbines. Due to the substantial aerodynamics differences, the analyses of vertical axis wind turbine on floating structures cannot be easily extended from what have been already done for horizontal axis wind turbines. Therefore, the main aim of the present work is to compare the dynamic response of the floating offshore wind turbine system adopting two different mooring dynamics approaches. Two versions of the in-house aero-hydro-mooring coupled model of dynamics for floating vertical axis wind turbine (FloVAWT) have been used, employing a mooring quasi-static model, which solves the equations using an energetic approach, and a modified version of floating vertical axis wind turbine, which instead couples with the lumped mass mooring line model MoorDyn. The results, in terms of mooring line tension, fatigue and response in frequency have been obtained and analysed, based on a 5 MW Darrieus type rotor supported by the OC4-DeepCwind semisubmersible.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Yichen Jiang ◽  
Peidong Zhao ◽  
Li Zou ◽  
Zhi Zong ◽  
Kun Wang

Abstract The offshore wind industry is undergoing a rapid development due to its advantage over the onshore wind farm. The vertical axis wind turbine (VAWT) is deemed to be potential in offshore wind energy utilization. A design of the offshore vertical axis wind turbine with a deflector is proposed and studied in this paper. Two-dimensional computational fluid dynamics (CFD) simulation is employed to investigate the aerodynamic performance of wind turbine. An effective method of obtaining the blade’s angle of attack (AoA) is introduced in CFD simulation to help analyze the blade aerodynamic torque variation. The numerical simulations are validated against the measured torque and wake velocity, and the results show a good agreement with the experiment. It is found that the blade instantaneous torque is correlated with the local AoA. Among the three deflector configurations, the front deflector leads to favorable local flow for the blade, which is responsible for the improved performance.


Author(s):  
Luca Vita ◽  
Uwe S. Paulsen ◽  
Helge A. Madsen ◽  
Per H. Nielsen ◽  
Petter A. Berthelsen ◽  
...  

This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines [1]. The design is carried out in an iterative process, involving the different sub-components and addressing several conflicting constraints. The present design does not aim to be the final optimum solution for this concept. Instead, the goal is to have a baseline model, based on the present technology, which can be improved in the future with new dedicated technological solutions. The rotor uses curved blades, which are designed in order to minimize the gravitational loads and to be produced by the pultrusion process. The floating platform is a slender cylindrical structure rotating along with the rotor, whose stability is achieved by adding ballast at the bottom. The platform is connected to the mooring lines with some rigid arms, which are necessary to absorb the torque transmitted by the rotor. The aero-elastic simulations are carried out with Hawc2, a numerical solver developed at Risø-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part of the European project DeepWind (2010–2014), which has been financed by the European Union (FP7-Future Emerging Technologies).


Author(s):  
Rajeswari Krishnan ◽  
Nallayarasu Seeninaidu

Offshore wind energy extraction has gathered momentum around the world due to its advantages over onshore wind farms at various fronts. The floating support system with vertical axis wind turbine might prove to be feasible concept in medium to deep waters. In this context, this paper addresses an investigation of hydrodynamic analysis of three column semi-submersible with Vertical Axis Wind Turbine (VAWT) in parked condition under regular and random waves. Free decay experiments were conducted for using scale model (1:75) in a laboratory wave basin at the Department of Ocean Engineering in Indian Institute of Technology Madras, India. Computational Fluid Dynamics (CFD) simulations were used to assess damping characteristics and validated with the experiments. Numerical simulations of hydrodynamic motion response of the floater were carried out using potential flow theory based commercial software (ANSYS AQWA). The damping values obtained from experiments were used in numerical simulations to obtain motion response and Response Amplitude Operator (RAO). The motion response obtained from the study was used to verify the suitability of the system for deployment in east and west coast of India.


Author(s):  
Sukanta Roy ◽  
Hubert Branger ◽  
Christopher Luneau ◽  
Denis Bourras ◽  
Benoit Paillard

The rapid shrinkage of fossil fuel sources and contrary fast-growing energy needs of social, industrial and technological enhancements, necessitate the need of different approaches to exploit the various renewable energy sources. Among the several technological alternatives, wind energy is one of the most emerging prospective because of its renewable, sustainable and environment friendly nature, especially at its offshore locations. The recent growth of the offshore wind energy market has significantly increased the technological importance of the offshore vertical axis wind turbines, both as floating or fixed installations. Particularly, the class of lift-driven vertical axis wind turbines is very promising; however, the existing design and technology is not competent enough to meet the global need of offshore wind energy. In this context, the project AEROPITCH co-investigated by EOLFI, CORETI and IRPHE aims at the development of a robust and sophisticated offshore vertical axis wind turbine, which would bring decisive competitive advantage in the offshore wind energy market. In this paper, simulations have been performed on the various airfoils of NACA 4-series, 5-series and Selig profiles at different chord Reynolds numbers of 60000, 100000 and 140000 using double multiple streamtube model with tip loss correction. Based on the power coefficient, the best suitable airfoil S1046 has been selected for a 3-bladed vertical axis wind turbine. Besides the blade profile, the turbine design parameters such as aspect ratio and solidity ratio have also been investigated by varying the diameter and chord of the blade. Further, a series of wind tunnel experiments will be performed on the developed wind turbine, and the implementation of active pitch control in the developed turbine will be investigated in future research.


Author(s):  
Liqin Liu ◽  
Ying Guo ◽  
Weichen Jin ◽  
Rui Yuan

The VAWT (vertical axis wind turbine) has advantages in the development of large-scale offshore wind power. This paper presents a motion study of a 5 MW floating VAWT composed of the Φ type Darrieus wind turbine and a truss spar floating foundation with heave plates. The surge, heave and pitch motion equations considering the effects of retardation function of the floating VAWT were established and solved numerically. Several load cases were carried out to analyze the motion performances of the floating VAWT. The results show that the wind forces have minimal influence on the heave motions of the floating VAWT, while they obviously increase its surge and pitch mean displacements. For LC3, the surge, heave and pitch frequencies of the floating VAWT are dominated by the wave frequencies, and the 2P (twice-per-revolution) response of pitch motions is not significant. For LC4, the 2P response of pitch motions of the floating VAWT are more significant than LC4.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
David Marten ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

Recently, a new interest in vertical axis wind turbine (VAWT) technology is fueled by research on floating support structures for large-scale offshore wind energy application. For the application on floating structures at multimegawatt size, the VAWT concept may offer distinct advantages over the conventional horizontal axis wind turbine (HAWT) design. As an example, VAWT turbines are better suited for upscaling, and at multimegawatt size, the problem of periodic fatigue cycles reduces significantly due to a very low rotational speed. Additionally, the possibility to store the transmission and electricity generation system at the bottom, compared to the tower top as in a HAWT, can lead to a considerable reduction of material logistics costs. However, as most VAWT research stalled in the mid 1990s, no sophisticated and established tools to investigate this concept further exist today. Due to the complex interaction between unsteady aerodynamics and movement of the floating structure, fully coupled simulation tools modeling both aero and structural dynamics are needed. A nonlinear lifting line free vortex wake (LLFVW) code was recently integrated into the open source wind turbine simulation suite qblade. This paper describes some of the necessary adaptions of the algorithm, which differentiates it from the usual application in HAWT simulations. A focus is set on achieving a high robustness and computational efficiency. A short validation study compares LLFVW results with those of a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (URANS) simulation.


2021 ◽  
pp. 0309524X2110379
Author(s):  
Brian Hand

The vertical axis wind turbine (VAWT) configuration has many advantages for an offshore wind turbine Installation. In this paper, the three dimensional (3D) computational fluid dynamics analysis of a large-scale 5 MW VAWT is conducted. At the optimum tip-speed ratio (TSR), the VAWT maximum inline force was 75% larger than the maximum lateral force. It was found the dynamic stall effects cause the VAWT flow field to become increasingly asymmetrical at the mid-span plane, when the TSR is reduced. The attachment of end plates to the blade tips, resulted in a performance improvement during the upwind phase with the average blade torque coefficient in this range being increased by 4.71%. Conversely, during the blade downwind phase a reduction in performance was found due to the increase in drag from the end plates and the average blade torque coefficient in this phase was reduced by 23.1%.


Author(s):  
Petter Andreas Berthelsen ◽  
Ivar Fylling ◽  
Luca Vita ◽  
Uwe S. Paulsen

This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available response analysis programs for mooring system forces and vessel motions, and combines this with a gradient search method for solution of nonlinear optimization problems with arbitrary constraints. Two different mooring system configurations are considered: Chain systems with 3 and 6 lines, respectively.


Sign in / Sign up

Export Citation Format

Share Document