Propose of Simplified Stress Intensity Factor Equation for SCC Extension of the Pipe Welds

Author(s):  
Mayumi Ochi ◽  
Kiminobu Hojo ◽  
Itaru Muroya ◽  
Kazuo Ogawa

Alloy 600 weld joints have potential for primary water stress corrosion cracks (PWSCC). At the present time it has been understood that PWSCC generates and propagates in the Alloy 600 base metal and the Alloy 600 weld metal and there has been no observation of cracking the stainless and the low alloy steel. For the life time evaluation of the pipes or components the crack extension analysis is required. To perform the axial crack extension analysis the stress intensity database or estimation equation corresponding to the extension crack shape is needed. From the PWSCC extension nature mentioned above, stress intensity factors of the conventional handbooks are not suitable because most of them assume a semi-elliptical crack and the maximum aspect ratio crack depth/crack half length is one (The evaluation in this paper had been performed before API 579-1/ASME FFS was published). Normally, with the advance of crack extension in the thickness direction at the weld joint, the crack aspect ratio exceeds one and the K-value of the conventional handbook can not be applied. Even if those equations are applied, the result would be overestimated. In this paper, considering characteristics of PWSCC’s extension behavior in the welding material, the axial crack was modeled in the FE model as a rectangular shape and the stress intensity factors at the deepest point were calculated with change of crack depth. From the database of the stress intensity factors, the simplified equation of stress intensity factor with parameter of radius/thickness and thickness/weld width was proposed.

Author(s):  
Mayumi Ochi ◽  
Kiminobu Hojo ◽  
Kazuo Ogawa ◽  
Naoki Ogawa

Considering characteristics of PWSCC’s propagation behavior of the dissimilar welding joint of the safe end nozzles, an axial crack was modeled in a FE (Finite Element) model as a rectangular shape with larger aspect ratio. The stress intensity factors at the deepest point of the crack were calculated with change of crack depth. Using the influence coefficients, the simplified equation of stress intensity factor with parameters of radius/thickness and thickness/weld width was proposed. The contents of this paper is revised from the paper already presented [1] by further investigation for the shallow cracks with less than 20% thickness.


2007 ◽  
Vol 348-349 ◽  
pp. 257-260
Author(s):  
Paolo Livieri ◽  
Roberto Tovo

This paper proposes a method for evaluation of the Stress Intensity Factors (SIFs) of embedded cracks lying along the bisector of the welded toe angle. The SIFs are calculated on the basis of the JV parameter (extension of the J-integral to a sharp V-notch) for a path radius equal to the crack extension without modelling the crack. The numerical calculations in the paper show the stability of the proposed method also with course meshes.


2014 ◽  
Vol 532 ◽  
pp. 418-421
Author(s):  
Yan Zhang ◽  
Ji Long Xie

Based on the stress intensity factor criterion, it analyzes the crack extension on wheel web hole of 840D freight train. By changing the lengths of the crack to calculate the different stress intensity factors, it gets the change law of the stress intensity factor in crack propagation process, which provides a strong theoretical basis for detecting the cracks and repairing the wheels of 840D freight train.


1982 ◽  
Vol 104 (4) ◽  
pp. 293-298 ◽  
Author(s):  
I. S. Raju ◽  
J. C. Newman

The purpose of this paper is to present stress-intensity factor influence coefficients for a wide range of semi-elliptical surface cracks on the inside or outside of a cylinder. The crack surfaces were subjected to four stress distributions: uniform, linear, quadratic, and cubic. These four solutions can be superimposed to obtain stress-intensity factor solutions for other stress distributions, such as those caused by internal pressure and by thermal shock. The results for internal pressure are given herein. The ratio of crack depth to crack length from 0.2 to 1; the ratio of crack depth to wall thickness ranged from 0.2 to 0.8; and the ratio of wall thickness to vessel radius was 0.1 or 0.25. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employ singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated from a nodal-force method. The present results were also compared to other analyses of surface cracks in cylinders. The results from a boundary-integral equation method agreed well (±2 percent), and those from other finite-element methods agreed fairly well (±10 percent) with the present results.


Author(s):  
D. J. Shim ◽  
S. Tang ◽  
T. J. Kim ◽  
N. S. Huh

Stress intensity factor solutions are readily available for flaws found in pipe to pipe welds or shell to shell welds (i.e., circumferential/axial crack in cylinder). In some situations, flaws can be detected in locations where an appropriate crack model is not readily available. For instance, there are no practical stress intensity factor solutions for circular-arc cracks which can form in circular welds (e.g., nozzle to vessel shell welds and storage cask closure welds). In this paper, stress intensity factors for circular-arc cracks in finite plates were calculated using finite element analysis. As a first step, stress intensity factors for circular-arc through-wall crack under uniform tension and crack face pressure were calculated. These results were compared with the analytical solutions which showed reasonable agreement. Then, stress intensity factors were calculated for circular-arc semi-elliptical surface cracks under the lateral and crack face pressure loading conditions. Lastly, to investigate the applicability of straight crack solutions for circular-arc cracks, stress intensity factors for circular-arc and straight cracks (both through-wall and surface cracks) were compared.


Author(s):  
Daniel M. Blanks

An API 579-1/ASME FFS-1 Failure Assessment Diagram based Fitness-for-Service assessment was carried out on an embedded crack-like flaw found in a nozzle to shell weld in a pressure vessel. Stress intensity factors were initially calculated by utilizing stress results from a Finite Element Analysis (FEA) of an uncracked configuration, with the standard embedded crack stress intensity factor solution given in API 579-1/ASME FFS-1. Due to the complex nozzle geometry and flaw size, a second analysis was carried out, incorporating a crack into the FEA model, to calculate the stress intensity factors and evaluate if the standard solution could be applied to this geometry. A large difference in the resulting stress intensity factors was observed, with those calculated by the FEA with the crack incorporated into the model to be twice as high as those calculated by the standard solutions, indicating the standard embedded crack stress intensity factor solution may be non-conservative in this case. An investigation was carried out involving a number of studies to determine the cause of the difference. Beginning with an elliptical shaped embedded crack in a plate, the stress intensity factor calculated with an idealized 3D crack mesh agreed with the API 579-1/ASME FFS-1 solution. Examining other crack locations, and crack shapes, such as a constant depth embedded crack, revealed how the solution began to differ. The greatest difference was found when considering a crack mesh with a small component height (i.e. the distance measured perpendicular from the crack face to the top of the mesh). A close agreement was then found between the stress intensity factors calculated in the nozzle model and an idealized crack mesh with component heights representative of the true geometry. This revealed that reduced structural stiffness is a key factor in the calculation of the stress intensity factors for this geometry, due to the close proximity of the embedded crack to the inner surface of the nozzle. It was found that this reduction is potentially significant even with relatively small crack sizes. This paper details the investigation, and aims to provide the reader with an awareness of situations when the standard stress intensity factor solutions may no longer be valid, and offers general recommendations to consider when calculating stress intensity factors in these situations.


Author(s):  
Do-Jun Shim ◽  
Matthew Kerr ◽  
Steven Xu

Recent studies have shown that the crack growth of PWSCC is mainly driven by the weld residual stress (WRS) within the dissimilar metal weld. The existing stress intensity factor (K) solutions for surface cracks in pipe typically require a 4th order polynomial stress distribution through the pipe wall thickness. However, it is not always possible to accurately represent the through thickness WRS with a 4th order polynomial fit and it is necessary to investigate the effect of the WRS fitting on the calculated stress intensity factors. In this paper, two different methods were used to calculate the stress intensity factor for a semi-elliptical circumferential surface crack in a pipe under a given set of simulated WRS. The first method is the Universal Weight Function Method (UWFM) where the through thickness WRS distribution can be represented as a piece-wise cubic fit. In the second method, the through thickness WRS profiles are represented as a 4th order polynomial curve fit (both using the entire wall thickness data and only using data up to the crack-tip). In addition, three-dimensional finite element (FE) analyses (using the simulated weld residual stress) were conducted to serve as a reference solution. The results of this study demonstrate the potential sensitivity of stress intensity factors to 4th order polynomial fitting artifacts. The piece-wise WRS representations used in the UWFM was not sensitive to these fitting artifacts and the UWFM solutions were in good agreement with the FE results.


2021 ◽  
Author(s):  
Murat Bozkurt ◽  
David Nash ◽  
Asraf Uzzaman

Abstract Pressure vessels can be subjected to various external local forces and moments acting in combination with main internal pressure. As a result of the stress system set up, and in the presence of attachment welds, surface cracks can occur on the interior and exterior walls. If these cracks cannot be detected at an early stage, there is a real potential for the vessel to rupture with obvious dangerous consequences. The behavior of fractured or geometric discontinuity structures can be investigated with linear elastic fracture mechanics (LEFM) parameters. The stress intensity factor (SIF) is the leading one, and with correct calculations, it can produce the stress intensity in the crack tip region. In cylinder-cylinder intersections subject to local loads, the maximum stress distribution occurs in and around these opening areas and failure in the system usually occurs in this region. Using this approach, the present study develops three-dimensional mixed mode stress intensity factor solutions on for external cracks on nozzle joints in cylindrical pressure vessels nozzle junctions for a variety of geometrical configurations. This was undertaken using a finite element approach and employing a bespoke software tool and solver, FCPAS - Fracture and Crack Propagation Analysis System — to create the finite element mesh and propagation characteristics. From this, a parameter study examining the influence of the crack shape, size and position was carried out with a fixed pressure vessel nozzle cylinder intersection geometry configuration and the appropriate stress intensity factors identified and reported. The FCPAS tool is shown to be an effective approach to modelling and characterizing cracks in pressure vessel nozzles.


Author(s):  
Jae-Uk Jeong ◽  
Jae-Boong Choi ◽  
Nam-Su Huh ◽  
Yun-Jae Kim

A complex crack is one of severe crack that can occur at the dissimilar metal weld of nuclear piping. A relevant fracture mechanics assessment for a pipe with a complex crack has become interested in structural integrity of nuclear piping. A stress intensity factor is not only an important parameter in the linear elastic fracture mechanics to predict the stress state at the crack tip, but also one of variables to calculate the J-integral in the elastic plastic fracture mechanics. The accurate calculation of stress intensity factor is required for integrity assessment of nuclear piping system based on Leak-Before-Break concept. In the present paper, stress intensity factors of complex-cracked pipes were calculated by using detailed 3-dimensional finite element analysis. As loading conditions, global bending, axial tension and internal pressure were considered. Based on the present FE works, the values of shape factors for stress intensity factor of complex-cracked pipes are suggested according to a variables change of complex crack geometries and pipes size. Furthermore, the closed-form expressions based on correction factor are newly suggested as a function of geometric variables. These new solutions can be used to Leak-Before-Break evaluation for complex-cracked pipes in the step of elastic J calculation.


Sign in / Sign up

Export Citation Format

Share Document