Multi-Disciplinary Design Optimization of Unmanned Aerial Vehicle

Author(s):  
Cheolwan Kim ◽  
Yung-Gyo Lee

A general procedure of preliminary design of aircraft and one-way fluid-structure interaction (FSI) applied to aircraft design is introduced briefly. Then, FSI and optimization technique are implemented to optimize a wing shape of an unmanned aerial vehicle (UAV) for minimum cruise drag. FSI analysis and optimization processes for minimizing drag of UAV are explained. Design variables are wing taper ratio and dihedral angle, and objective function is the cruise drag of UAV. Fluid solution is generated with Euler solver and structural analysis is performed with FEM solver, Diamond. Sample points are selected by Design of Experiment (DOE) method and Kriging method is used for generation of an approximation model.

Author(s):  
Giacomo Frulla

Aircraft preliminary design requires a lot of complex evaluations and assumptions related to design variables that are not completely known at a very initial stage. Didactical activity becomes unclear since students ask for precise values in the starting point. A tentative in providing a simple tool for wing weight estimation is presented devoted to overcome these common difficulties and clarifies the following points: a) the intrinsic iterative nature of the preliminary design stage, b) provide useful and realistic calculation for the wing weight with very simple assumption not covered by cumbersome calculations and formulas. The procedure is applied to the calculation of wing weight for a typical general aviation aircraft in the preliminary design stage. The effect of the main variables on the wing weight variation is also presented confirming well-known results from literature and design manuals.


Author(s):  
Hyeong-Uk Park ◽  
Joon Chung ◽  
Jae-Woo Lee ◽  
Daniel Neufeld

Manufacturers often develop new products by modifying and extending existing products in order to achieve new market demands while minimizing development time and manufacturing costs. In this research, an efficient derivative design process was developed to efficiently adapt existing aircraft designs according to new requirements. The proposed design process was evaluated using a case study that derives an unmanned aerial vehicle design from a baseline manned 2-seatlight sport aircraft. Multiple unmanned aerial vehicle operational scenarios were analysed to define the requirements of the derivative aircraft. These included patrol, environmental monitoring, and communications relay missions. Each mission has different requirements and therefore each resulting derivative unmanned aerial vehicle design has different geometry, devices, and performance. The derivative design process involved redefining the design requirements and identifying the minimum design variable set that needed to be considered in order to efficiently adapt the baseline design. Uncertainty was considered as well to enhance the reliability of the optimized result when it considered different conditions for each mission. An optimization method based on the possibility based design optimization was proposed to handle uncertainty that arises in the design requirements for the multi-role nature of unmanned aerial vehicles. In this paper, the possibility based design optimization method was implemented with multidisciplinary design optimization technique to derive the derivative unmanned designs based on originally manned aircraft. This approach prevented constraint violation via uncertainty variations in the operating altitude and payload weight for each. The unmanned aerial vehicle derivative designs satisfying the requirements of three different missions were derived from the proposed design process.


Author(s):  
Ali Dinc ◽  
Yousef Gharbia ◽  
Abdullah Bushehri ◽  
Fawaz Al-Sarraf ◽  
Ali Al-Ali ◽  
...  

Author(s):  
Ian Lunsford ◽  
Thomas H Bradley

Aircraft survivability is a classical consideration of combat aircraft design and tactical development, but the fundamental model of aircraft survivability must be updated to be able to consider modern tactical scenarios that are applicable to unmanned aircraft. This paper seeks therefore to define the set of design tradeoffs and an evaluation of the tactical effectiveness for unmanned aircraft survivability. Traditional and modern survivability evaluation methods are presented and integrated into a computational simulation to create a probabilistic evaluation of unmanned aircraft survivability. The results demonstrate the development of design tradeoffs for a hypothetical unmanned C-130J Hercules against a single man-portable air defense system. The discussion focuses on the demonstration of the utility of this survivability evaluation framework for consideration of survivability in unmanned aerial vehicle (UAV) design, the utility of considering survivability in the design of multi-UAV configurations (including the loyal wingman and swarms), and the value of the probabilistic survivability model for multi-aircraft simulations.


2021 ◽  
Vol 2 (Oktober) ◽  
pp. 66-74
Author(s):  
Argo Surono ◽  
Imam Ashar ◽  
Muhamat Maariful Huda

Abstract: Unmanned Aerial Vehicle is a type of aircraft that is controlled by a remote-control system via radio waves. UAV is an unmanned system (Unmanned System), which is an electro-mechanical-based system that can carry out programmed missions with the characteristics of a UAV that is able to fly without a pilot capable of controlling automatically and can run again by carrying several weapons or other tools. An autopilot is a mechanical, electrical, or hydraulic system that guides a vehicle without human intervention. The application of the Autonomous control system on the UAV is carried out by using Autonomous equipment in the form of components such as Flight Controller, GPS, Mission Planner Software and Telemetry. The number of parameters set by the observations made on the movement of the UAV when in Auto mode. The flight test used a square waypoint with a distance of 500 meters on each side. The UAV is able to fly in an Autonomous manner stably using a predetermined Waypoint. This is a pure experiment by means of tool testing and data collection that requires very high attention from the crew and results in fatigue.


Author(s):  
Ali Dinç

In this study, preliminary sizing of a turboprop engine powered high altitude unmanned aerial vehicle and it`s propulsion system for an assumed mission profile in Turkey was performed. Aircraft mission profile is one of the most important design inputs in aircraft design. While the aircraft is dimensioned according to the requirements in the specification (useful payload, range, target cost, etc.), parameters such as cruise altitude and speed within the mission profile affect the engine type, power level, fuel quantity, and therefore the overall dimensions and total weight of the aircraft. The unmanned aerial vehicle with turboprop engine investigated in this study, can stay in the air for at least 24 hours at high altitude (40000 ft) and can be used for border surveillance, coast control, forest fires and land exploration.


2012 ◽  
Vol 225 ◽  
pp. 315-322 ◽  
Author(s):  
Sumit Jashnani ◽  
Prahsant Shaholia ◽  
Ali Khamker ◽  
Muhammad Ishfaq ◽  
Tarek Nada

Applications involving the use of alternate, renewable energy sources are expanding exponentially, and are in high demand. Solar power has long been harnessed for such applications and aviation is no stranger to it with its strong drive towards becoming an environment-friendly industry. This paper describes a straight forward procedure to design and test a solar powered unmanned aerial vehicle that can fly continuously for 24 hours at any day of the year. The paper introduces the modeling and preparation of hardware testing of the propulsion and power sub-system. The main components of this sub-system are solar panels, the electromechanical drive train and the propeller. A design for a thrust stand to measure the performance of the system is also introduced.


2021 ◽  
Author(s):  
Daniel J Neufeld

Aircraft design is a complex process involving multiple co-dependent design variables and many design decisions. For commercial aircraft design, this difficulty is offset somewhat by the wealth of knowledge available. Observing existing designs has provided useful empirical relationships and insights for the designer to apply, yielding a relatively well defined problem. The wide variety of configuration possibilities, mission profiles, and the relative lack of historical data leave the problem of unmanned aerial vehicle (UAV) design less defined. The purpose of this research was to develop a robust optimization package for UAV design using data mining to aid configuration decisions and to develop empirical relationships applicable to a wide variety of mission profiles. An optimization software package was developed using a Genetic Algorithm (GA) and Data Mining. The algorithm proved successful in carrying out the preliminary design phase of a number to test cases similar to existing UAVs. Designs produced by the algorithm promise improved performance flight performance relative to existing systems, and reduced development time when compared with conventional design methodology. Future work will introduce high fidelity analysis to the framework developed in this research.


2021 ◽  
Author(s):  
Daniel J Neufeld

Aircraft design is a complex process involving multiple co-dependent design variables and many design decisions. For commercial aircraft design, this difficulty is offset somewhat by the wealth of knowledge available. Observing existing designs has provided useful empirical relationships and insights for the designer to apply, yielding a relatively well defined problem. The wide variety of configuration possibilities, mission profiles, and the relative lack of historical data leave the problem of unmanned aerial vehicle (UAV) design less defined. The purpose of this research was to develop a robust optimization package for UAV design using data mining to aid configuration decisions and to develop empirical relationships applicable to a wide variety of mission profiles. An optimization software package was developed using a Genetic Algorithm (GA) and Data Mining. The algorithm proved successful in carrying out the preliminary design phase of a number to test cases similar to existing UAVs. Designs produced by the algorithm promise improved performance flight performance relative to existing systems, and reduced development time when compared with conventional design methodology. Future work will introduce high fidelity analysis to the framework developed in this research.


2021 ◽  
Vol 6 (5) ◽  
pp. 111-117
Author(s):  
Ishan Mishra ◽  
Aayush Kumar ◽  
Vanshaj Malhotra

Significant technology advances have enabled planetary exploration aircraft to be considered as a viable science platform. These systems fill in a unique planetary science measurement gap, that of the regional scale, near-surface observation while providing a new perspective for planetary discovery. Exploration of Mars using UAV (Unmanned Aerial Vehicle) has been planned for over 25 years by leading space organizations such as NASA. Recent efforts have been able to produce some mature mission and flight system concepts, ready for flight project implementation. There are however si0gnificant numbers of challenges associated with getting an airplane to fly through the thin, carbon dioxide-rich Martian atmosphere. Traditional aircraft design expertise does not always apply to this sort of vehicle, and geometric, aerodynamic, and mission restrictions result in a restricted viable design space. This paper presents the conceptual approach that was taken to design a UAV capable of performing a VTOL (Vertical Take-Off and Landing) in the atmosphere of Mars. The UAV was designed to participate in the International Planetary Aerial Systems Challenge 2021. The UAV could carry a science payload of up to 5 kg (weight on mars). 


Sign in / Sign up

Export Citation Format

Share Document