Measurement and Simulation of Water Hammer in Piping Systems Including Junction Coupling

Author(s):  
Stefan Riedelmeier ◽  
Stefan Becker ◽  
Eberhard Schlücker

For the analysis of the effects of fluid-structure interaction (FSI) during water hammer in piping systems, a complex test facility was constructed. Resonance experiments with movable bends in two system configurations were carried out. The pressure and the displacement of the bend were recorded. The aim was to reproduce the results with two coupled codes: a one-dimensional solver based on the method of characteristics (MOC) for the hydraulic system and a three-dimensional solver based on the finite element method (FEM) working with one-dimensional beam elements for the structural system. The calculation included junction and friction coupling. The models were fine-tuned separately. For this purpose, special measurements were carried out. These included the determination of the structural damping, the friction factor, the influence of the bending of the anchorage, etc. After the validation of the models, the results of the coupled calculations were compared against the measurements, the performance of the coupled codes was evaluated and the most important physical effects were analyzed and are discussed.

2003 ◽  
Vol 9 (10) ◽  
pp. 1159-1187 ◽  
Author(s):  
A. Nandi ◽  
S. Neogy

Vibration-based diagnostic methods are used for the detection of the presence of cracks in beams and other structures. To simulate such a beam with an edge crack, it is necessary to model the beam using finite elements. Cracked beam finite elements, being one-dimensional, cannot model the stress field near the crack tip, which is not one-dimensional. The change in neutral axis is also not modeled properly by cracked beam elements. Modeling of such beams using two-dimensional plane elements is a better approximation. The best alternative would be to use three-dimensional solid finite elements. At a sufficient distance away from the crack, the stress field again becomes more or less one-dimensional. Therefore, two-dimensional plane elements or three-dimensional solid elements can be used near the crack and one-dimensional beam elements can be used away from the crack. This considerably reduces the required computational effort. In the present work, such a coupling of dissimilar elements is proposed and the required transition element is formulated. A guideline is proposed for selecting the proper dimensions of the transition element so that accurate results are obtained. Elastic deformation, natural frequency and dynamic response of beams are computed using dissimilar elements. The finite element analysis of cracked rotating shafts is complicated because of the fact that elastic deformations are superposed on the rigid-body motion (rotation about an axis). A combination of three-dimensional solid elements and beam elements in a rotating reference is proposed here to model such rotors.


1993 ◽  
Vol 115 (1) ◽  
pp. 43-46 ◽  
Author(s):  
J. J. Crisco

Range of motion (ROM), the displacement between two limits, is one of the most common parameters used to describe joint kinematics. The ROM is a one-dimensional parameter, although the motion at many normal and pathological joints is three-dimensional. Certainly, the ROM yields vital information, but an overall measure of the three-dimensional mobility at a joint may also be useful. The volume of motion (VOM) is such a measure. The translational VOM is the volume defined by all possible ROMs of a point on a rigid body. The rotational VOM, although its interpretation is not as tangible as the translational VOM, is a measure of the three-dimensional rotational mobility of a rigid body. The magnitude of the VOM is proportional to mobility; the VOM is a scaler, which does not contain any directional information. Experimental determination of the VOM is not practical since it would require applying loads in an infinite number of directions. The mathematical derivation given here allows the VOM to be calculated, with the assumption of conservative elasticity, from the resultant displacements of three distinct load vectors of equal magnitude. An example of the VOM is presented in the comparison of the biomechanical stabilizing potential of various spinal fixation devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Arpan Laskar ◽  
Sujit Kumar Pal

Permeability and consolidation of soil are known as the most variable soil properties. The values of permeability and consolidation of soil may vary with depth even in case of homogeneous soil layers, and because of that, the determination of appropriate values of permeability and consolidation is a complex and complicated engineering task. In this study, horizontal and vertical permeability apparatus and a 3D (three-dimensional) consolidation apparatus are developed to determine the effects of vertical pressure on horizontal and vertical permeability and the effects of vertical surcharge pressures on three-dimensional consolidation of soil. A series of horizontal and vertical permeability tests of soil under different vertical pressures and a series of 3D consolidation tests under different surcharge pressures are performed. From the study, it is observed that the horizontal and vertical permeability of soil changes with the changes in vertical pressures, and 3D consolidation of soil also changes with the changes in surcharge pressures. The horizontal and vertical permeability values obtained from the newly developed horizontal and vertical permeability apparatus are used in Terzaghi’s one-dimensional consolidation theory to find out the consolidation characteristics of the soil, and it is compared with the results obtained from the newly developed 3D consolidation apparatus.


Author(s):  
A. Ganzha ◽  
L. Semenenko ◽  
Yu. Bronevskyi ◽  
Yu. Savraieva

At present, the problem of general thermal modernization of building envelopes is given much attention both at the level of scientists and consumers. This is one of the effective ways to reduce natural gas consumption, reduce the negative impact on the environment, maintain and improve comfortable indoor conditions. Over the last decade, the population has rapidly begun to insulate their homes in order to raise the indoor air temperature to a comfortable level in the multi-storey residential sector. Due to insufficient attention of the authorities in the housing and communal sector, the lack of scientific research and widespread public awareness, there is a massive thermal insulation of building by residents of multi-store buildings within their own apartments. But the study of thermal processes that occur in individual thermal insulation of enclosing structures is currently not fully completed. Therefore, in the context of significant increases in gas and electricity prices, this problem is relevant. In the study was carried out mathematical modeling of a fragment of a partially insulated wall of an enclosing structure with determination of heat flux by solving a three-dimensional differential equation of thermal conductivity with boundary conditions of II, III and IV kind and distribution of characteristics of building structures and insulation. These results can be used in the analysis of the efficiency of insulation of the building taking into account the fragmentary insulation and of comparison with systemic thermal modernization. As a result of modeling, the three-dimensional temperature fields of wall surfaces, are determined, there are additional heat fluxes (thermal bridges), which are not considered in the simplified one-dimensional calculation. In one-dimensional calculation, the heat flux from the wall is reduced by 2.43 times during insulation. Taking into account the total heat flow from the side surfaces near the window (thermal bridges) and system insulation - by 1.75 times. With fragmentary insulation and considering the total heat flux from the side surfaces near the window - by 1.6 times. The next stage of calculations is the determination of the actual air temperatures in the premises of a multi-storey building considering the actual condition of enclosing structures and heating systems, heaters, mode parameters of the coolant and outdoor air parameters. The methods and means of this analysis can take into account the final data of heat loss adjustment after the mathematical modeling presented in this paper. In consequence, the results will be taken into account in the projects of thermal modernization of buildings, reconstruction of heating systems, rational placement of sources, selection of equipment and regulation of devices.


1982 ◽  
Vol 60 (2) ◽  
pp. 179-195 ◽  
Author(s):  
Andreas Mandelis

A combined variational–Green's function approach to the determination of the capacitance of various useful three-dimensional geometries is developed. This formalism leads to general, exact expressions for the capacitance, which can be used with all geometries provided the spatial distribution of the charge can be determined. In particular, the theory takes into account the finite thickness and unequal areas of the capacitor plates. Specific applications of the theory include circular capacitors with disc and ring-shaped charged plate geometries. Such geometries are commonly encountered in experimental set-ups for capacitive measurements of thin film thicknesses in the field of microelectronics. Numerical results indicate that the values of thin film thicknesses calculated via simplified one-dimensional formulae for the capacitance may be incorrect by more than 10%


2020 ◽  
Author(s):  
Kenta Kato ◽  
Kiyofumi Takaba ◽  
Saori Maki-Yonekura ◽  
Nobuhiko Mitoma ◽  
Yusuke Nakanishi ◽  
...  

The layered structures of graphite and related nanographene molecules play key roles in their physical and electronic functions. However, the stacking modes of negatively curved nanographenes remains unclear, owing to the lack of suitable nanographene molecules. Herein we report the synthesis and one-dimensional supramolecular self-assembly of negatively curved nanographenes without any assembly-assisting substituents. This curved nanographene self-assembles in various organic solvents and acts as an efficient gelator. The formation of nanofibers was confirmed by microscopic measurements, and an unprecedented double-helix assembly by continuous π-π stacking was uncovered by three-dimensional electron crystallography. This work not only reports the discovery of an all-sp<sup>2</sup>-carbon supramolecular π-organogelator with negative curvature, but also demonstrates the power of three-dimensional electron crystallography for the structural determination of submicrometer-sized molecular alignment.


Author(s):  
Albert Ruprecht ◽  
Thomas Helmrich

The system oscillations of a water power plant caused by the draft tube flow in part load are investigated. A coupled simulation of a one-dimensional water hammer analysis and a three-dimensional flow calculation of the draft tube vortex rope is applied. With this approach the excitations of the oscillations, frequencies and amplitudes, have not to be estimated but are obtained from the simulation. This allows an accurate prediction of the system oscillations caused by draft tube surge.


2020 ◽  
Author(s):  
Kenta Kato ◽  
Kiyofumi Takaba ◽  
Saori Maki-Yonekura ◽  
Nobuhiko Mitoma ◽  
Yusuke Nakanishi ◽  
...  

The layered structures of graphite and related nanographene molecules play key roles in their physical and electronic functions. However, the stacking modes of negatively curved nanographenes remains unclear, owing to the lack of suitable nanographene molecules. Herein we report the synthesis and one-dimensional supramolecular self-assembly of negatively curved nanographenes without any assembly-assisting substituents. This curved nanographene self-assembles in various organic solvents and acts as an efficient gelator. The formation of nanofibers was confirmed by microscopic measurements, and an unprecedented double-helix assembly by continuous π-π stacking was uncovered by three-dimensional electron crystallography. This work not only reports the discovery of an all-sp<sup>2</sup>-carbon supramolecular π-organogelator with negative curvature, but also demonstrates the power of three-dimensional electron crystallography for the structural determination of submicrometer-sized molecular alignment.


Sign in / Sign up

Export Citation Format

Share Document