Application of infrared laser to living cells for manipulation of gene expression, and in vivo temperature measurement method

2021 ◽  
Author(s):  
Yasuhiro Kamei ◽  
Takumi Tomoi ◽  
Joe Sakamoto ◽  
Suguru Ohe ◽  
Yosuke Tamada
2003 ◽  
Vol 23 (20) ◽  
pp. 7425-7436 ◽  
Author(s):  
Guillaume Bossis ◽  
Patrizia Ferrara ◽  
Claire Acquaviva ◽  
Isabelle Jariel-Encontre ◽  
Marc Piechaczyk

ABSTRACT Prior ubiquitinylation of the unstable c-Fos proto-oncoprotein is thought to be required for recognition and degradation by the proteasome. Contradicting this view, we report that, although c-Fos can form conjugates with ubiquitin in vivo, nonubiquitinylatable c-Fos mutants show regulated degradation identical to that of the wild-type protein in living cells under two classical conditions of study: transient c-fos gene expression during the G0/G1 phase transition upon stimulation by mitogens and constitutive expression during asynchronous growth. Moreover, c-Fos destruction during the G0/G1 phase transition is unusual because it depends on two distinct but cumulative mechanisms. We report here that one mechanism involves a C-terminal destabilizer which does not need an active ubiquitin cycle, whereas the other involves an N-terminal destabilizer dependent on ubiquitinylation of an upstream c-Fos breakdown effector. In addition to providing new insights into the mechanisms of c-Fos protein destruction, an important consequence of our work is that ubiquitinylation-dependent proteasomal degradation claimed for a number of proteins should be reassessed on a new experimental basis.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
F Moriconi ◽  
H Christiansen ◽  
H Christiansen ◽  
N Sheikh ◽  
J Dudas ◽  
...  

2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2017 ◽  
Vol 95 (3) ◽  
pp. 1313 ◽  
Author(s):  
L. Zhang ◽  
L. F. Schütz ◽  
C. L. Robinson ◽  
M. L. Totty ◽  
L. J. Spicer

2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


Sign in / Sign up

Export Citation Format

Share Document