Tacrine induces endoplasmic reticulum-stressed apoptosis via disrupting the proper assembly of oligomeric acetylcholinesterase in cultured neuronal cells

2021 ◽  
pp. MOLPHARM-AR-2021-000269
Author(s):  
Etta Y.L. Liu ◽  
Shinghung Mak ◽  
Xiangpeng Kong ◽  
Yingjie Xia ◽  
Kenneth K.L. Kwan ◽  
...  
2021 ◽  
Vol 155 ◽  
pp. 105361
Author(s):  
Martina Damenti ◽  
Giovanna Coceano ◽  
Francesca Pennacchietti ◽  
Andreas Bodén ◽  
Ilaria Testa

2011 ◽  
Vol 317 (11) ◽  
pp. 1621-1628 ◽  
Author(s):  
Gordon P. Meares ◽  
Marjelo A. Mines ◽  
Eléonore Beurel ◽  
Tae-Yeon Eom ◽  
Ling Song ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2274
Author(s):  
Hyun-Su Lee ◽  
Eun-Nam Kim ◽  
Gil-Saeng Jeong

Methamphetamine (METH) is a highly addictive drug that induces irreversible damage to neuronal cells and pathological malfunction in the brain. Aromadendrin, isolated from the flowers of Chionanthus retusus, has been shown to have anti-inflammatory or anti-tumor activity. Nevertheless, it has been reported that METH exacerbates neurotoxicity by inducing endoplasmic reticulum (ER) stress via the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in neuronal cells. There is little evidence that aromadendrin protects cells from neurotoxicity induced by METH. In this study, we found that aromadendrin partially suppressed the METH-induced cell death in SH-SY5y cells without causing cytotoxicity. Aromadendrin regulated METH-induced ER stress by preserving the phosphorylation of the PI3K/Akt/mTOR signaling pathway in METH-exposed SH-SY5y cells. In addition, aromadendrin mitigated METH-induced autophagic and the apoptotic pathways in METH-exposed SH-SY5y cells. Mechanistic studies revealed that pre-treatment with aromadendrin restored the expression of anti-apoptotic proteins in METH-exposed conditions. The inhibitor assay confirmed that aromadendrin-mediated restoration of mTOR phosphorylation protected cells from autophagy and apoptosis in METH-exposed cells. Therefore, these findings suggest that aromadendrin relatively has a protective effect on SH-SY5y cells against autophagy and apoptosis induced by METH via regulation of ER stress and the PI3K/Akt/mTOR signaling pathway.


PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9135 ◽  
Author(s):  
Jesse C. Wiley ◽  
James S. Meabon ◽  
Harald Frankowski ◽  
Elise A. Smith ◽  
Leslayann C. Schecterson ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 277-285 ◽  
Author(s):  
Cheng-Gang Zou ◽  
Xiu-Zhen Cao ◽  
Yue-Shui Zhao ◽  
Shun-Yu Gao ◽  
Shu-De Li ◽  
...  

Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases. Although CCAAT/enhancer-binding protein homologous protein (CHOP) has been shown to play a critical role in ER stress, the precise apoptosis cascade downstream of CHOP is unknown. In this report, we investigated the mechanism of ER stress-mediated apoptosis as well as the action of IGF-I in PC-12 neuronal cells. Our results demonstrated that tribbles-related protein 3 (TRB3), which is a target gene of CHOP, was responsible for tunicamycin (an ER stress inducer)-induced apoptosis. TRB3 could promote dephosphorylation of Akt in PC-12 cells. IGF-I inhibited ER stress-induced apoptosis by restoring the phosphorylation level of Akt. Both wortmannin (a phosphatidylinositide 3-kinase inhibitor) and SB 212090 (a p38 MAPK inhibitor) suppressed the protective effect of IGF-I on ER stress-induced apoptosis. Interestingly, IGF-I attenuated ER stress-mediated expression of TRB3 but not CHOP. This action of IGF-I was abolished by SB 212090 but not by wortmannin. Immunoprecipitation analysis revealed that IGF-I promoted the phosphorylation of CHOP by activating p38 MAPK, probably leading to a decrease in the transcriptional activity of CHOP. The dephosphorylation of Akt resulted in increased expression of a proapoptotic protein, p53 up-regulated modulator of apoptosis (PUMA), in a forkhead box O3a-dependent manner. Knockdown of PUMA by short hairpin RNA attenuated ER stress-mediated apoptosis. Thus, our current study indicates that both TRB3 and PUMA are critical molecules in ER stress-induced apoptosis. IGF-I effectively protects PC-12 neuronal cells against ER stress-induced apoptosis through the phosphatidylinositide 3-kinase/Akt and p38 MAPK pathways. Endoplasmic reticulum (ER) stress causes neuronal apoptosis by inducing the expression of tribbles-related protein 3 and PUMA. IGF-1 prevents neuronal apoptosis against ER stress through phosphatidylinositide 3-kinase/Akt and p38 mitogen-activated protein kinase pathways.


Sign in / Sign up

Export Citation Format

Share Document