Pushing the frontiers of density functionals by solving the fractional electron problem

Science ◽  
2021 ◽  
Vol 374 (6573) ◽  
pp. 1385-1389 ◽  
Author(s):  
James Kirkpatrick ◽  
Brendan McMorrow ◽  
David H. P. Turban ◽  
Alexander L. Gaunt ◽  
James S. Spencer ◽  
...  
Keyword(s):  
1989 ◽  
Vol 86 ◽  
pp. 853-859 ◽  
Author(s):  
Federico Moscardó ◽  
José Pérez-Jordá ◽  
Emilio San-Fabián

2021 ◽  
Vol 7 (7) ◽  
pp. 101
Author(s):  
Ian Shuttleworth

A comparative study of the unreacted and reacted uniaxially strained Pt(111) and the layered (111)-Pt/Ni/Pt3Ni and (111)-Pt/Ni/PtNi3 surfaces has been performed using density functional theory (DFT). An in-depth study of the unreacted surfaces has been performed to evaluate the importance of geometric, magnetic and ligand effects in determining the reactivity of these different Pt surfaces. An analysis of the binding energies of oxygen and hydrogen over the high-symmetry binding positions of all surfaces has been performed. The study has shown that O and H tend to bind more strongly to the (111)-Pt/Ni/Pt3Ni surface and less strongly to the (111)-Pt/Ni/PtNi3 surface compared to binding on the equivalently strained Pt(111) surfaces. Changes in the surface magnetisation of the surfaces overlaying the ferromagnetic alloys during adsorption are discussed, as well as the behaviour of the d-band centre across all surfaces, to evaluate the potential mechanisms for these differences in binding. An accompanying comparison of the accessible density functionals has been included to estimate the error in the computational binding energies.


Author(s):  
Sherif Abdulkader Tawfik ◽  
Tim Gould ◽  
Catherine Stampfl ◽  
Michael J. Ford

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aaron D. Kaplan ◽  
Stewart J. Clark ◽  
Kieron Burke ◽  
John P. Perdew

AbstractClassical turning surfaces of Kohn–Sham potentials separate classically allowed regions (CARs) from classically forbidden regions (CFRs). They are useful for understanding many chemical properties of molecules but need not exist in solids, where the density never decays to zero. At equilibrium geometries, we find that CFRs are absent in perfect metals, rare in covalent semiconductors at equilibrium, but common in ionic and molecular crystals. In all materials, CFRs appear or grow as the internuclear distances are uniformly expanded. They can also appear at a monovacancy in a metal. Calculations with several approximate density functionals and codes confirm these behaviors. A classical picture of conduction suggests that CARs should be connected in metals, and disconnected in wide-gap insulators, and is confirmed in the limits of extreme compression and expansion. Surprisingly, many semiconductors have no CFR at equilibrium, a key finding for density functional construction. Nonetheless, a strong correlation with insulating behavior can still be inferred. Moreover, equilibrium bond lengths for all cases can be estimated from the bond type and the sum of the classical turning radii of the free atoms or ions.


Sign in / Sign up

Export Citation Format

Share Document