A self-amplifying loop of YAP and SHH drives formation and expansion of heterotopic ossification

2021 ◽  
Vol 13 (599) ◽  
pp. eabb2233
Author(s):  
Qian Cong ◽  
Yuchen Liu ◽  
Taifeng Zhou ◽  
Yaxing Zhou ◽  
Ruoshi Xu ◽  
...  

Heterotopic ossification (HO) occurs as a common complication after injury or in genetic disorders. The mechanisms underlying HO remain incompletely understood, and there are no approved prophylactic or secondary treatments available. Here, we identify a self-amplifying, self-propagating loop of Yes-associated protein (YAP)–Sonic hedgehog (SHH) as a core molecular mechanism underlying diverse forms of HO. In mouse models of progressive osseous heteroplasia (POH), a disease caused by null mutations in GNAS, we found that Gnas−/− mesenchymal cells secreted SHH, which induced osteoblast differentiation of the surrounding wild-type cells. We further showed that loss of Gnas led to activation of YAP transcription activity, which directly drove Shh expression. Secreted SHH further induced YAP activation, Shh expression, and osteoblast differentiation in surrounding wild-type cells. This self-propagating positive feedback loop was both necessary and sufficient for HO expansion and could act independently of Gnas in fibrodysplasia ossificans progressiva (FOP), another genetic HO, and nonhereditary HO mouse models. Genetic or pharmacological inhibition of YAP or SHH abolished HO in POH and FOP and acquired HO mouse models without affecting normal bone homeostasis, providing a previously unrecognized therapeutic rationale to prevent, reduce, and shrink HO.

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4237-4245 ◽  
Author(s):  
A.G. Haramis ◽  
J.M. Brown ◽  
R. Zeller

Mutations in the murine limb deformity (ld) gene disrupt differentiation of the Apical Ectodermal Ridge (AER) and patterning of distal limb structures. However, initial outgrowth of the limb bud is not affected, suggesting that early and late functions of the AER are uncoupled. Similarly, activation of the 5′ members of the HoxD gene cluster (Hoxd-11 to Hoxd-13) is not affected in ld mutant posterior limb bud mesenchyme, but the subsequent anteriorization of 5′ HoxD domains is delayed by about 12 hours and is associated with reduced levels of polarising activity. These results indicate that the ld gene products act upstream of 5′ HoxD genes during patterning of the autopod. Expression of the signalling molecule Sonic hedgehog (Shh) in the posterior limb bud mesenchyme is initiated normally, but ceases prematurely indicating a defect in maintenance of Shh by the ld mutant AER. Furthermore, no Fgf-4 transcripts are detected in the ld mutant AER, whereas Fgf-8 transcripts remain expressed. However, Shh expression can be rescued by heterospecific grafting of ld mutant posterior mesenchyme under a wild-type chicken AER. These studies show that the AER defect in ld homozygous limb buds causes disruption of the FGF-4/SHH feedback loop and support the proposed essential role for FGF-4 in maintaining Shh expression during limb pattern formation.


2021 ◽  
Author(s):  
Masakazu Yamamoto ◽  
Sean J Stoessel ◽  
Shoko Yamamoto ◽  
David J Goldhamer

Fibrodysplasia ossificans progressiva (FOP) is a devastating disease of progressive heterotopic bone formation for which effective treatments are currently unavailable. FOP is caused by dominant gain-of-function mutations in the receptor ACVR1 (also known as ALK2), which render the receptor inappropriately responsive to activin ligands. In previous studies, we developed a genetic mouse model of FOP that recapitulates most clinical aspects of the disease. In this model, genetic loss of the wild-type Acvr1 allele profoundly exacerbated heterotopic ossification, suggesting the hypothesis that the stoichiometry of wild-type and mutant receptors dictates disease severity. Here, we tested this model by producing FOP mice that conditionally over-express human wild-type ACVR1. Injury-induced heterotopic ossification (HO) was completely blocked in FOP mice when expression of both the mutant and wild-type receptor were targeted to Tie2-positive cells, which includes fibro/adipogenic progenitors (FAPs). Perinatal lethality of Acvr1R206H/+ mice was rescued by constitutive ACVR1 over-expression and these mice survived to adulthood at predicted Mendelian frequencies. Constitutive over-expression of ACVR1 also provided protection from spontaneous HO, and the incidence and severity of injury-induced HO in these mice was dramatically reduced. Analysis of pSMAD1/5/8 signaling both in cultured cells and in vivo indicates that ACVR1 over-expression functions cell-autonomously by reducing osteogenic signaling in response to activin A. Manipulating the stoichiometry of FOP-causing and wild-type ACVR1 receptors may provide the foundation for novel therapeutic strategies to treat this devastating disease.


Development ◽  
2002 ◽  
Vol 129 (21) ◽  
pp. 4963-4974 ◽  
Author(s):  
Murielle Rallu ◽  
Robert Machold ◽  
Nicholas Gaiano ◽  
Joshua G. Corbin ◽  
Andrew P. McMahon ◽  
...  

Considerable data suggest that sonic hedgehog (Shh) is both necessary and sufficient for the specification of ventral pattern throughout the nervous system, including the telencephalon. We show that the regional markers induced by Shh in the E9.0 telencephalon are dependent on the dorsoventral and anteroposterior position of ectopic Shh expression. This suggests that by this point in development regional character in the telencephalon is established. To determine whether this prepattern is dependent on earlier Shh signaling, we examined the telencephalon in mice carrying either Shh- orGli3-null mutant alleles. This analysis revealed that the expression of a subset of ventral telencephalic markers, including Dlx2 andGsh2, although greatly diminished, persist inShh-/- mutants, and that these same markers were expanded in Gli3-/- mutants. To understand further the genetic interaction between Shh and Gli3, we examined Shh/Gli3 andSmoothened/Gli3 double homozygous mutants. Notably, in animals carrying either of these genetic backgrounds, genes such as Gsh2 andDlx2, which are expressed pan-ventrally, as well as Nkx2.1,which demarcates the ventral most aspect of the telencephalon, appear to be largely restored to their wild-type patterns of expression. These results suggest that normal patterning in the telencephalon depends on the ventral repression of Gli3 function by Shh and, conversely, on the dorsal repression of Shh signaling by Gli3. In addition these results support the idea that, in addition to hedgehog signaling, a Shh-independent pathways must act during development to pattern the telencephalon.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12
Author(s):  
Richard Coffey ◽  
Grace Jung ◽  
Elizabeta Nemeth ◽  
Tomas Ganz

Erythroferrone (ERFE) is a hormone secreted by erythroblasts in response to endogenous or exogenous erythropoietic stimuli. ERFE suppresses the production of the iron-regulatory hormone hepcidin by hepatocytes, thereby allowing for increased iron absorption and iron mobilization to support intensified erythropoiesis. In disorders of ineffective erythropoiesis, such as β-thalassemia or congenital dyserythropoietic anemias, chronic suppression of hepcidin results in excessive iron absorption, toxic iron accumulation and a range of systemic manifestations, some of which appear unrelated to iron overload. Recent evidence suggests that ERFE is a ligand trap for select bone morphogenetic proteins (BMPs). BMPs regulate iron homeostasis, but also modulate diverse physiologic processes including embryonic development, kidney growth, and bone homeostasis. Existing mouse models of β-thalassemia used to study the effects of elevated ERFE in vivo are confounded by chronic anemia and hemolysis, complicating attribution of observed phenotypes directly to the action of ERFE. Additionally, serum ERFE levels in these mouse models are much lower than those measured in human patients with β-thalassemia, resulting in a potential underestimation of the pathophysiologic effects of elevated ERFE. To determine the specific effect of elevated ERFE levels in vivo, we generated multiple lines of novel transgenic mice that selectively overexpress graded levels of Erfe in erythroid cells. As expected, Erfe transgenic mice, relative to wild-type littermates, displayed a dose-dependent phenotype of liver iron loading with inappropriately low hepcidin expression. At 6 weeks of age liver nonheme iron levels in transgenic mice ranged from ~2 times that of wild-type littermates, in the lowest expressing line, to ~4 times that of wild-type littermates in the highest-expressing line (line H mice). However, elevated Erfe expression did not consistently alter expression of the BMP target genes Id1 or Smad7 in either the liver or bone marrow. Line-H transgenic mice had increased hemoglobin, hematocrit, mean corpuscular volume, and serum iron suggesting that elevated ERFE levels promoted erythropoiesis, at least in part, by suppressing hepcidin and mobilizing more iron, generating a phenotype similar to mouse models of hereditary hemochromatosis. We also observed phenotypic features that appeared unrelated to iron excess. Line-H breeding diverged from the expected mendelian inheritance ratio of 50% transgenic pups for male mice at weaning age, yielding 37% transgenic pups (N = 108, p =0.0035). Transgenic mice from line-H also had lower body weights and reduced kidney size, accompanied by higher serum urea levels. Additionally, approximately a third of line-H transgenic mice displayed an unusual behavior characterized by repetitive circling and an impaired righting reflex, suggesting vestibular dysfunction. These findings of stunted growth, renal impairment and behavioral abnormalities raise the possibility that elevated ERFE levels may exert iron-independent adverse effects in congenital anemias with ineffective erythropoiesis and in β-thalassemia, perhaps by inhibiting BMP-dependent developmental signals. Future studies using the graded expression of the Erfe-transgene combined with mouse models of dyserythropoiesis will facilitate analysis of the contribution of varying levels of ERFE to the pathophysiology of ineffective erythropoiesis and lay the foundation for pharmacologically targeting ERFE for the amelioration of the hematologic and nonhematologic manifestations of anemias with ineffective erythropoiesis. Disclosures Nemeth: Vifor: Consultancy; Protagonist: Consultancy; Ionis Pharmaceuticals: Consultancy; Silarus Therapeutics: Current equity holder in private company; Intrinsic LifeSciences: Current equity holder in private company. Ganz:Disc Medicine: Consultancy; Silarus Therapeutics: Current equity holder in private company; Intrinsic LifeSciences: Current equity holder in private company; Ambys: Consultancy; Sierra Oncology: Consultancy; Rockwell: Consultancy; Gossamer Bio: Consultancy; American Regent: Consultancy; Global Blood Therapeutics: Consultancy; Astellas: Consultancy; Akebia: Consultancy; Vifor: Consultancy; Ionis Pharmaceuticals: Consultancy.


2021 ◽  
Author(s):  
Senem Aykul ◽  
Lily Huang ◽  
Lili Wang ◽  
Nanditha Das ◽  
Sandra Reisman ◽  
...  

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by amino acid-altering mutations in ACVR1, a type I BMP receptor. The mutations occur in the region encoding the intracellular domain of ACVR1 and bestow FOP-mutant ACVR1 with the neofuction of recognizing Activin A as an agonistic ligand. (In contrast, Activin A antagonizes BMP signaling from wild type ACVR1.) This neofuction is required for HO in FOP as inhibition of Activin A stops the initiation and progression of heterotopic bone lesions in FOP. These results unequivocally demonstrated that HO in FOP is dependent on activation of FOP-mutant ACVR1 by ligand and set the stage to explore ACVR1-blocking antibodies as an additional potential therapeutic for FOP. Surprisingly, ACVR1 antibodies stimulate - rather than inhibit - HO and induce Smad1/5/8 phosphorylation of FOP-mutant ACVR1. This property is restricted to FOP-mutant ACVR1, as signaling by wild type ACVR1 is inhibited by these antibodies, as is trauma-induced HO. These results uncover yet an additional novel property of FOP-mutant ACVR1 and indicate that anti-ACVR1 antibodies should not be considered as a therapeutic strategy for FOP


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Belén Prados ◽  
Raquel del Toro ◽  
Donal MacGrogan ◽  
Paula Gómez-Apiñániz ◽  
Tania Papoutsi ◽  
...  

AbstractBone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.


2021 ◽  
Author(s):  
John B Lees-Shepard ◽  
Sean J Stoessel ◽  
Julian Chandler ◽  
Keith Bouchard ◽  
Patricia Bento ◽  
...  

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the bone morphogenetic protein (BMP) type I receptor, ACVR1 (also known as ALK2), the most prevalent of which is an arginine to histidine substitution [ACVR1(R206H)] in the glycine-serine rich intracellular domain of the receptor. A fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in responsive progenitors, which drives skeletogenic commitment and HO. With the clear targets of activin A and ACVR1 identified, development of antibody therapeutics to prevent ligand-receptor interactions is an interventional approach currently being explored. Here, we developed a monoclonal blocking antibody (JAB0505) to the extracellular domain of ACVR1 and tested its ability to inhibit HO in established FOP mouse models. JAB0505 inhibited BMP-dependent gene expression in wild-type and ACVR1(R206H)-overexpressing cell lines. Strikingly, however, JAB0505 treatment markedly exacerbated injury-induced HO in two independent FOP mouse models in which ACVR1(R206H) was either broadly expressed, or more selectively expressed in fibro/adipogenic progenitors (FAPs). JAB0505 drove HO even under conditions of activin A inhibition, indicating that JAB0505 has receptor agonist activity. JAB0505-treated mice exhibited multiple, distinct foci of heterotopic lesions, suggesting an atypically broad anatomical domain of FAP recruitment to endochondral ossification. In addition, skeletogenic differentiation was both delayed and prolonged, and this was accompanied by dysregulation of FAP population growth. Collectively, alterations in the growth and differentiative properties of FAPs and FAP-derived skeletal cells are implicated in the aggravated HO phenotype. These data raise serious safety and efficacy concerns for the use of anti-ACVR1 antibodies to treat FOP patients.


Sign in / Sign up

Export Citation Format

Share Document