Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients

2021 ◽  
Vol 13 (617) ◽  
Author(s):  
Pauline P. Chen ◽  
Alma-Martina Cepika ◽  
Rajni Agarwal-Hashmi ◽  
Gopin Saini ◽  
Molly J. Uyeda ◽  
...  
Keyword(s):  
T Cells ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Mario R Ehlers

Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic β cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual β cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. For the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off therapy in most treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T-cell–directed therapies, including therapies that lead to partial depletion or modulation of effector T cells and preservation or augmentation of regulatory T cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: an effector T-depleting or -modulating drug, a cytokine-based tolerogenic (regulatory T-cells–promoting) agent, and an antigen-specific component. The long term goal is to reestablish immunologic tolerance to β cells, thereby preserving residual β cells early after diagnosis or enabling restoration of β-cell mass from autologous stem cells or induced neogenesis in patients with established T1D.


2009 ◽  
Vol 183 (12) ◽  
pp. 8232-8243 ◽  
Author(s):  
Roxana Roohi Ahangarani ◽  
Wim Janssens ◽  
Luc VanderElst ◽  
Vincent Carlier ◽  
Thierry VandenDriessche ◽  
...  

2021 ◽  
pp. 135245852110033
Author(s):  
Quentin Howlett-Prieto ◽  
Xuan Feng ◽  
John F Kramer ◽  
Kevin J Kramer ◽  
Timothy W Houston ◽  
...  

Objective: To determine the effect of long-term anti-CD20 B-cell-depleting treatment on regulatory T cell immune subsets that are subnormal in untreated MS patients. Methods: 30 clinically stable MS patients, before and over 38 months of ocrelizumab treatment, were compared to 13 healthy controls, 29 therapy-naïve MS, 9 interferon-β-treated MS, 3 rituximab-treated MS, and 3 rituximab-treated patients with other autoimmune inflammatory diseases. CD8, CD28, CD4, and FOXP3 expression in peripheral blood mononuclear cells was quantitated with flow cytometry. Results: CD8+ CD28− regulatory cells rose from one-third of healthy control levels before ocrelizumab treatment (2.68% vs 7.98%), normalized by 12 months (13.5%), and rose to 2.4-fold above healthy controls after 18 months of ocrelizumab therapy (19.0%). CD4+ FOXP3+ regulatory cells were lower in MS than in healthy controls (7.98%) and showed slight long-term decreases with ocrelizumab. CD8+ CD28− and CD4+ FOXP3+ regulatory T cell percentages in IFN-β-treated MS patients were between those of untreated MS and healthy controls. Interpretation: Long-term treatment with ocrelizumab markedly enriches CD8+ CD28− regulatory T cells and corrects the low levels seen in MS before treatment, while slightly decreasing CD4+ FOXP3+ regulatory T cells. Homeostatic enrichment of regulatory CD8 T cells provides a mechanism, in addition to B cell depletion, for the benefits of anti-CD20 treatment in MS.


Sign in / Sign up

Export Citation Format

Share Document