Critically ill patient with multidrug-resistant Acinetobacter baumannii respiratory infection successfully treated with intravenous and nebulized bacteriophage therapy

Author(s):  
Sohail Rao ◽  
Monica Betancourt-Garcia ◽  
Yetunde O. Kare-Opaneye ◽  
Brett E. Swiercezewski ◽  
Jason W. Bennett ◽  
...  

Hospitalized patients are at risk of developing serious multi-drug resistant bacterial infections. This risk is heightened in patients who are on mechanical ventilation, are immunocompromised, and/or have chronic comorbidities. We report the case of a 52-year-old critically ill patient with a multidrug resistant Acinetobacter baumannii (MDR-A) respiratory infection who was successfully treated with antibiotics and intravenous and nebulized bacteriophage therapy.

2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Stephanie LaVergne ◽  
Theron Hamilton ◽  
Biswajit Biswas ◽  
M Kumaraswamy ◽  
R T Schooley ◽  
...  

Abstract In the era of antibiotic resistance, alternative treatment options for multidrug-resistant bacterial infections are being explored. We present a case of multidrug-resistant Acinetobacter baumannii infection treated with bacteriophages. Clinical trials are needed to further investigate bacteriophage therapy as an option to treat multidrug-resistant bacterial infections.


Author(s):  
Behnam Sisakhtpour ◽  
Arezoo Mirzaei ◽  
Vajihe Karbasizadeh ◽  
Nafiseh Hosseini ◽  
Mehdi Shabani ◽  
...  

Abstract Background Widespread misuse of antibiotics caused bacterial resistance increasingly become a serious threat. Bacteriophage therapy promises alternative treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated and characterized a novel, potent lytic bacteriophage against multi-drug resistant (MDR) Acinetobacter baumannii and described the lytic capability and endolysin activity of the phage to evaluate the potential in phage therapy. Methods A novel phage, pIsf-AB02, was isolated from hospital sewage. The morphological analysis, its host range, growth characteristics, stability under various conditions, genomic restriction pattern were systematically investigated. The protein pattern of the phage was analyzed, and the endolysin activity of the phage was determined under the non-denaturing condition on SDS-PAGE. The optimal lytic titer of phage was assessed by co-culture of the phage with clinical MDR A. baumannii isolates. Finally, HeLa cells were used to examine the safety of the phage. Results The morphological analysis revealed that the pIsf-AB02 phage displays morphology resembling the Myoviridae family. It can quickly destroy 56.3% (27/48) of clinical MDR A. baumannii isolates. This virulent phage could decrease the bacterial host cells (from 108 CFU/ml to 103 CFU/ml) in 30 min. The optimum stability of the phage was observed at 37 °C. pH 7 is the most suitable condition to maintain phage stability. The 15 kDa protein encoded by pIsf-AB02 was detected to have endolysin activity. pIsf-AB02 did not show cytotoxicity to HeLa cells, and it can save HeLa cells from A. baumannii infection. Conclusion In this study, we isolated a novel lytic MDR A. baumannii bacteriophage, pIsf-AB02. This phage showed suitable stability at different temperatures and pHs, and demonstrated potent in vitro endolysin activity. pIsf-AB02 may be a good candidate as a therapeutic agent to control nosocomial infections caused by MDR A. baumannii.


2021 ◽  
Vol 1 (S1) ◽  
pp. s51-s51
Author(s):  
Lisa Saidel ◽  
Abraham Borer ◽  
Orli Sagi

Background:Acinetobacter baumannii, one of the major causes of nosocomial infections in modern healthcare systems, is characterized by its great persistence in the environment and by its ability to rapidly develop resistance to many antimicrobials. Most A. baumannii infections occur in intubated critically ill patients, causing ventilator-associated pneumonia which is a leading cause of mortality. During the coronavirus disease 19 (COVID-19) pandemic an increase in hospital-acquired carbapenem-resistant A. baumannii (CRAB) infection and colonization in acute-care hospitals has been described. CRAB healthcare-associated infections are often linked to breaches of infection prevention and control (IPC). Beginning in April 2020, our hospital’s IPC unit ordered mandatory universal masking for all healthcare workers (HCWs). Shortages of personal protective equipment during the COVID-19 pandemic led to extended use of surgical face masks by HCWs in our hospital. We investigated whether the extended use of surgical face masks was linked to an increase of CRAB colonization in our intubated critically ill patients. Methods: Surgical masks were collected from doctors, nurses, and housekeeping staff working in 2 internal medicine departments, each including a 4-bed unit for intubated critically ill patients. All surgical masks were worn continuously for 4–5 hours before removal. “Cases“ were defined as HCWs who treated CRAB colonized critically ill patients. “Controls“ were defined as HCWs who did not enter the critically ill patient unit. Surgical masks were incubated with BHI enrichment broth (HyLabs Rehovot, Israel) for 48 hours at 35°C. BHI was seeded on multidrug-resistant (MDR)–selective CHROMagar plates (HyLabs) and incubated overnight at 35°C. Identification was performed using MALDI-ToF mass spectrophotometry (bioMérieux, France). Susceptibility was tested using Vitek 2 (bioMérieux). Results: In total, 55 HCWs participated in the study: 25 cases and 30 controls. Masks from 10 cases (40%) were colonized with Acinetobacter spp versus only 3 masks (10%) from controls (OR, 5.98; 95% CI, 1.42–25; P = .012). Of 13 masks contaminated with Acinetobacter spp, 8 of 10 contaminated masks among cases were colonized with CRAB, whereas only 1 of 3 masks of controls was colonized with CRAB. Conclusions: During the COVID-19 pandemic, extended surgical mask use while treating patients colonized with CRAB increased mask contamination with this bacterium. Surgical masks should be changed after treating a patient colonized with CRAB the same way gown and glove removal and hand hygiene are performed.Funding: NoDisclosures: None


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit Gaurav ◽  
Varsha Gupta ◽  
Sandeep K. Shrivastava ◽  
Ranjana Pathania

AbstractThe increasing prevalence of antimicrobial resistance has become a global health problem. Acinetobacter baumannii is an important nosocomial pathogen due to its capacity to persist in the hospital environment. It has a high mortality rate and few treatment options. Antibiotic combinations can help to fight multi-drug resistant (MDR) bacterial infections, but they are rarely used in the clinics and mostly unexplored. The interaction between bacteriostatic and bactericidal antibiotics are mostly reported as antagonism based on the results obtained in the susceptible model laboratory strain Escherichia coli. However, in the present study, we report a synergistic interaction between nalidixic acid and tetracycline against clinical multi-drug resistant A. baumannii and E. coli. Here we provide mechanistic insight into this dichotomy. The synergistic combination was studied by checkerboard assay and time-kill curve analysis. We also elucidate the mechanism behind this synergy using several techniques such as fluorescence spectroscopy, flow cytometry, fluorescence microscopy, morphometric analysis, and real-time polymerase chain reaction. Nalidixic acid and tetracycline combination displayed synergy against most of the MDR clinical isolates of A. baumannii and E. coli but not against susceptible isolates. Finally, we demonstrate that this combination is also effective in vivo in an A. baumannii/Caenorhabditis elegans infection model (p < 0.001)


2020 ◽  
Vol 17 (11) ◽  
pp. 1168-1176
Author(s):  
Dennapa SAELOH ◽  
Monton VISUTTHI ◽  
Marisa LEEHA ◽  
Surasak LIMSUWAN ◽  
Supayang Piyawan VORAVUTHIKUNCHAI

Acinetobacter baumannii (A. baumannii) has been known as a major cause of nosocomial bacterial infections worldwide. The bacteria are increasingly associated with a broad spectrum of antibiotic resistance, and this has become a widespread concern in a variety of hospitals.Antibiotic development and alternative treatment have become priorities for the treatment of bacterial infections.This study investigated the efficacy of meropenem in combination with five ethanolic extracts of plants in Myrtaceae against extensively drug-resistant (XDR) A. baumannii. The resistant phenotype was previously determined by microdilution method. XDR-A. baumannii strains showed resistance to meropenem with the minimum inhibitory concentration (MIC) in a range of 16 - 128 µg/mL, whereas the MIC value of all extracts, including Calistemon lancealatus, Eucalyptus citridora, Rhodomytus tomentasa, Syzygium cumini, and Xanthortemon chrysanthus, was over 1,000 µg/mL. Interestingly, all extracts potentiated the activity of the antibiotic by reducing the MIC values of the antibiotic. Xanthortemon chrysanthus extract displayed excellent synergism against the bacteria by decreasing the MIC value of the drug greater than 8-fold. In addition, the extract, at concentrations of 31.25, 62.5, 125, 250, 500, and 1,000 µg/mL, obviously increased the inhibitory effect of meropenem (1/4´MIC) against A. baumannii. The percentage of bacterial growth inhibition by combination was 87.9, 88.8, 91.8, 93.6, 99.9, and 100, respectively. The results supported that the extract could improve the activity of ineffective antibiotics against drug-resistant pathogens.Therefore, the findings may serve as therapeutic options for XDR-A. baumannii infections in the future.


2021 ◽  
Author(s):  
Yue Zheng ◽  
Nana Xu ◽  
Jiaojiao Pang ◽  
Hui Han ◽  
Hongna Yang ◽  
...  

Abstract Background: Acinetobacter baumannii is one of the most often isolated opportunistic pathogens in intensive care units (ICUs). Extensively drug-resistant A. baumannii (XDR-AB) strains lack susceptibility to almost all antibiotics and pose a heavy burden on healthcare institutions. In this study, we evaluated the impact of XDR-AB colonization on both the short-term and long-term survival of critically ill patients.Methods: We prospectively enrolled patients from two adult ICUs in Qilu Hospital of Shandong University from April 2018 through December 2018. Using nasopharyngeal and perirectal swabs, we evaluated the presence of XDR-AB colonization. Participants were followed up for six months. Primary endpoints were 28-day and six-month mortality after ICU admission. For survival analysis, we used the Kaplan-Meier curve. We identified risk factors associated with 28-day and six-month mortality using the logistic regression model and Cox proportional-hazards survival regression model, respectively. Results: Out of 431 patients, 77 were colonized with XDR-AB. Based on the Kaplan-Meier curve results, the survival before 28 days did not differ by colonization status; however, a significant lower survival rate was obtained at six months in colonized patients. Univariate and multivariate results confirmed that XDR-AB colonization was not associated with 28-day mortality, but was an independent risk factor of lower survival days at six months, resulting in a 1.97 times higher risk of death at six months.Conclusions: XDR-AB colonization has no effect on short-term mortality but is associated with lower long-term survival in critically ill patients.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 720 ◽  
Author(s):  
Maria Soledad Ramirez ◽  
Robert A. Bonomo ◽  
Marcelo E. Tolmasky

Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.


Sign in / Sign up

Export Citation Format

Share Document