scholarly journals Drug Susceptibility Distributions of Mycobacterium chimaera and Other Nontuberculous Mycobacteria

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Bettina Schulthess ◽  
Daniel Schäfle ◽  
Nicole Kälin ◽  
Tamara Widmer ◽  
Peter Sander

ABSTRACT Recent outbreaks of cardiac surgery-associated Mycobacterium chimaera infections have highlighted the importance of species differentiation within the Mycobacterium avium complex and pointed to a lack of antibiotic susceptibility data for M. chimaera. Using the MGIT 960/EpiCenter TB eXiST platform, we have determined antibiotic susceptibility patterns of 48 clinical M. chimaera isolates and 139 other nontuberculous mycobacteria, including 119 members of the M. avium complex and 20 Mycobacterium kansasii isolates toward clofazimine and other drugs used to treat infections with slow-growing nontuberculous mycobacteria (NTM). MIC50, MIC90, and tentative epidemiological cutoff (ECOFF) values for clofazimine were 0.5 mg/liter, 1 mg/liter, and 2 mg/liter, respectively, for M. chimaera. Comparable values were observed for other M. avium complex members, whereas lower MIC50 (≤0.25 mg/liter), MIC90 (0.5 mg/liter), and ECOFF (1 mg/liter) values were found for M. kansasii. Susceptibility to clarithromycin, ethambutol, rifampin, rifabutin, amikacin, moxifloxacin, and linezolid was in general similar for M. chimaera and other members of the M. avium complex, but increased for M. kansasii. The herein determined MIC distributions, MIC90, and ECOFF values of clofazimine for M. chimaera and other NTM provide the basis for the definition of clinical breakpoints. Further studies are needed to establish correlation of in vitro susceptibility and clinical outcome.

2015 ◽  
Vol 59 (10) ◽  
pp. 6117-6124 ◽  
Author(s):  
Grennady Wirjanata ◽  
Boni F. Sebayang ◽  
Ferryanto Chalfein ◽  
Prayoga ◽  
Irene Handayuni ◽  
...  

ABSTRACTThe 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potentin vitroefficacies againstPlasmodium falciparum, but susceptibility data forP. vivaxare limited. The species- and stage-specificex vivoactivities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistantP. falciparumandP. vivaxare prevalent. Both compounds were highly active againstP. falciparum(median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) andP. vivax(NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ inP. falciparum(26.5 versus 5.1 nM,P= 0.021) andP. vivax(341.6 versus 6.5 nM,P= 0.021) and for MB inP. vivax(10.1 versus 1.6 nM,P= 0.010). The excellentex vivoactivities of NQ and MB against bothP. falciparumandP. vivaxhighlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic.


2018 ◽  
Vol 56 (12) ◽  
Author(s):  
Twisha S. Patel ◽  
Peggy L. Carver ◽  
Gregory A. Eschenauer

ABSTRACT The purpose of this review is to critically analyze published data evaluating the impact of azole pharmacokinetic and pharmacodynamic parameters, MICs, and Candida species on clinical outcomes in patients with candidemia. Clinical breakpoints (CBPs) for fluconazole and voriconazole, which are used to determine susceptibility, have been defined by the Clinical and Laboratory Standards Institute (CLSI) for Candida species. Studies evaluating the relationship between treatment efficacy and in vitro susceptibility, as well as the pharmacodynamic targets, have been conducted in patients treated with fluconazole for candidemia; however, for species other than Candida albicans and Candida glabrata, and for other forms of invasive candidiasis, data remain limited and randomized trials are not available. Limited data evaluating these relationships with voriconazole are available. While pharmacodynamic targets for posaconazole and isavuconazole have been proposed based upon studies conducted in murine models, CBPs have not been established by CLSI. Fluconazole remains an important antifungal agent for the treatment of candidemia, and data supporting its use based on in vitro susceptibility are growing, particularly for C. albicans and C. glabrata. Further investigation is needed to establish the roles of voriconazole, posaconazole, and isavuconazole in the treatment of candidemia and for all agents in the treatment of other forms of invasive candidiasis.


2011 ◽  
Vol 55 (9) ◽  
pp. 3985-3989 ◽  
Author(s):  
Maria Sjölund-Karlsson ◽  
Kevin Joyce ◽  
Karen Blickenstaff ◽  
Takiyah Ball ◽  
Jovita Haro ◽  
...  

ABSTRACTDue to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasiveSalmonellainfections. In the present study, 696 isolates of non-TyphiSalmonellacollected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-twoSalmonella entericaserotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-TyphiSalmonellaisolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. AmongSalmonellaserotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-typeSalmonellaof ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin andSalmonella enterica.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James D. Blanchard ◽  
Valerie Elias ◽  
David Cipolla ◽  
Igor Gonda ◽  
Luiz E. Bermudez

ABSTRACT Nontuberculous mycobacteria (NTM) affect an increasing number of individuals worldwide. Infection with these organisms is more common in patients with chronic lung conditions, and treatment is challenging. Quinolones, such as ciprofloxacin, have been used to treat patients, but the results have not been encouraging. In this report, we evaluate novel formulations of liposome-encapsulated ciprofloxacin (liposomal ciprofloxacin) in vitro and in vivo. Its efficacy against Mycobacterium avium and Mycobacterium abscessus was examined in macrophages, in biofilms, and in vivo using intranasal instillation mouse models. Liposomal ciprofloxacin was significantly more active than free ciprofloxacin against both pathogens in macrophages and biofilms. When evaluated in vivo, treatment with the liposomal ciprofloxacin formulations was associated with significant decreases in the bacterial loads in the lungs of animals infected with M. avium and M. abscessus. In summary, topical delivery of liposomal ciprofloxacin in the lung at concentrations greater than those achieved in the serum can be effective in the treatment of NTM, and further evaluation is warranted.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dae Hun Kim ◽  
Su-Young Kim ◽  
Hee Jae Huh ◽  
Nam Yong Lee ◽  
Won-Jung Koh ◽  
...  

ABSTRACT We evaluated the in vitro activity of rifamycin derivatives, including rifampin, rifapentine, rifaximin, and rifabutin, against clinical nontuberculous mycobacteria (NTM) isolates. Of the rifamycin derivatives, rifabutin showed the lowest MICs against all NTM species, including Mycobacterium avium complex, M. abscessus, and M. kansasii. Rifabutin also had effective in vitro activity against macrolide- and aminoglycoside-resistant NTM isolates. Rifabutin could be worth considering as a therapeutic option for NTM disease, particularly drug-resistant disease.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Jeffrey M. Flynn ◽  
Lydia C. Cameron ◽  
Talia D. Wiggen ◽  
Jordan M. Dunitz ◽  
William R. Harcombe ◽  
...  

ABSTRACT A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro. However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a “weakest-link” approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them. IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa. The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.


2018 ◽  
Vol 62 (4) ◽  
pp. e01788-17 ◽  
Author(s):  
Zofia Bakuła ◽  
Magdalena Modrzejewska ◽  
Lian Pennings ◽  
Małgorzata Proboszcz ◽  
Aleksandra Safianowska ◽  
...  

ABSTRACTVery few studies have examined drug susceptibility ofMycobacterium kansasii, and they involve a limited number of strains. The purpose of this study was to determine drug susceptibility profiles ofM. kansasiiisolates representing a spectrum of species genotypes (subtypes) with two different methodologies, i.e., broth microdilution and Etest assays. To confirm drug resistance, drug target genes were sequenced. A collection of 85M. kansasiiisolates, including representatives of eight different subtypes (I to VI, I/II, and IIB) from eight countries, was used. Drug susceptibility against 13 and 8 antimycobacterial agents was tested by using broth microdilution and Etest, respectively. For drug-resistant or high-MIC isolates, eight structural genes (rrl,katG,inhA,embB,rrs,rpsL,gyrA, andgyrB) and one regulatory region (embCA) were PCR amplified and sequenced in the search for resistance-associated mutations. All isolates tested were susceptible to rifampin (RIF), amikacin (AMK), co-trimoxazole (SXT), rifabutin (RFB), moxifloxacin (MXF), and linezolid (LZD) according to the microdilution method. Resistance to ethambutol (EMB), ciprofloxacin (CIP), and clarithromycin (CLR) was found in 83 (97.7%), 17 (20%), and 1 (1.2%) isolate, respectively. The calculated concordance between the Etest and dilution method was 22.6% for AMK, 4.8% for streptomycin (STR), 3.2% for CLR, and 1.6% for RIF. For EMB, INH, and SXT, not even a single MIC value determined by one method equaled that by the second method. The only mutations disclosed were A2266C transversion at therrlgene (CLR-resistant strain) and A128G transition at therpsLgene (strain with STR MIC of >64 mg/liter). In conclusion, eight drugs, including RIF, CLR, AMK, SXT, RFB, MXF, LZD, and ethionamide (ETO), showed highin vitroactivity againstM. kansasiiisolates. Discrepancies of the results between the reference microdilution method and Etest preclude the use of the latter for drug susceptibility determination inM. kansasii. Drug resistance inM. kansasiimay have different genetic determinants than resistance to the same drugs inM. tuberculosis.


2015 ◽  
Vol 60 (1) ◽  
pp. 343-347 ◽  
Author(s):  
Douglas J. Biedenbach ◽  
Richard A. Alm ◽  
Sushmita D. Lahiri ◽  
Edina Reiszner ◽  
Daryl J. Hoban ◽  
...  

ABSTRACTCeftaroline, the active metabolite of the prodrug ceftaroline-fosamil, is an advanced-generation cephalosporin with activity against methicillin-resistantStaphylococcus aureus(MRSA). This investigation providesin vitrosusceptibility data for ceftaroline against 1,971S. aureusisolates collected in 2012 from seven countries (26 centers) in the Asia-Pacific region as part of the Assessing Worldwide Antimicrobial Resistance and Evaluation (AWARE) program. Broth microdilution as recommended by the CLSI was used to determine susceptibility. In all, 62% of the isolates studied were MRSA, and the ceftaroline MIC90for allS. aureusisolates was 2 μg/ml (interpretive criteria: susceptible, ≤1 μg/ml). The overall ceftaroline susceptibility rate forS. aureuswas 86.9%, with 100% of methicillin-sensitiveS. aureusisolates and 78.8% of MRSA isolates susceptible to this agent. The highest percentages of ceftaroline-nonsusceptible MRSA isolates came from China (47.6%), all of which showed intermediate susceptibility, and Thailand (37.1%), where over half (52.8%) of isolates were resistant to ceftaroline (MIC, 4 μg/ml). Thirty-eight ceftaroline-nonsusceptible isolates (MIC values of 2 to 4 μg/ml) were selected for molecular characterization. Among the isolates analyzed, sequence type 5 (ST-5) was the most common sequence type encountered; however, all isolates analyzed from Thailand were ST-228. Penicillin-binding protein 2a (PBP2a) substitution patterns varied by country, but all isolates from Thailand had the Glu239Lys substitution, and 12 of these also carried an additional Glu447Lys substitution. Ceftaroline-fosamil is a useful addition to the antimicrobial agents that can be used to treatS. aureusinfections. However, with the capability of this species to develop resistance to new agents, it is important to recognize and monitor regional differences in trends as they emerge.


2017 ◽  
Vol 55 (6) ◽  
pp. 1812-1820 ◽  
Author(s):  
Tsidiso G. Maphanga ◽  
Erika Britz ◽  
Thokozile G. Zulu ◽  
Ruth S. Mpembe ◽  
Serisha D. Naicker ◽  
...  

ABSTRACTDisseminated emmonsiosis is an important AIDS-related mycosis in South Africa that is caused byEmergomycesafricanus, a newly described and renamed dimorphic fungal pathogen.In vitroantifungal susceptibility data can guide management. Identification of invasive clinical isolates was confirmed phenotypically and by sequencing of the internal transcribed spacer region. Yeast and mold phase MICs of fluconazole, voriconazole, itraconazole, posaconazole, caspofungin, anidulafungin, micafungin, and flucytosine were determined with custom-made frozen broth microdilution (BMD) panels in accordance with Clinical and Laboratory Standards Institute recommendations. MICs of amphotericin B, itraconazole, posaconazole, and voriconazole were determined by Etest. Fifty uniqueE. africanusisolates were tested. The yeast and mold phase geometric mean (GM) BMD and Etest MICs of itraconazole were 0.01 mg/liter. The voriconazole and posaconazole GM BMD MICs were 0.01 mg/liter for both phases, while the GM Etest MICs were 0.001 and 0.002 mg/liter, respectively. The fluconazole GM BMD MICs were 0.18 mg/liter for both phases. The GM Etest MICs of amphotericin B, for the yeast and mold phases were 0.03 and 0.01 mg/liter. The echinocandins and flucytosine had very limitedin vitroactivity. Treatment and outcome data were available for 37 patients; in a multivariable model including MIC data, only isolation from blood (odds ratio [OR], 8.6; 95% confidence interval [CI], 1.3 to 54.4;P= 0.02) or bone marrow (OR, 12.1; 95% CI, 1.2 to 120.2;P= 0.03) (versus skin biopsy) was associated with death.In vitrosusceptibility data support the management of disseminated emmonsiosis with amphotericin B, followed by itraconazole, voriconazole, or posaconazole. Fluconazole was a relatively less potent agent.


Sign in / Sign up

Export Citation Format

Share Document