scholarly journals Spiroindolone That Inhibits PfATPase4 Is a Potent, Cidal Inhibitor of Toxoplasma gondii TachyzoitesIn VitroandIn Vivo

2013 ◽  
Vol 58 (3) ◽  
pp. 1789-1792 ◽  
Author(s):  
Ying Zhou ◽  
Alina Fomovska ◽  
Stephen Muench ◽  
Bo-Shiun Lai ◽  
Ernest Mui ◽  
...  

ABSTRACTHere, we show that spiroindolone, an effective treatment for plasmodia, is also active againstToxoplasma gondiitachyzoites.In vitro, spiroindolone NITD609 is cidal for tachyzoites (50% inhibitory concentration [IC50], 1μM) and not toxic to human cells at ≥10μM. Two daily oral doses of 100 mg/kg of body weight reduced the parasite burden in mice by 90% (P= 0.002), measured 3 days after the last dose. This inhibition ofT. gondiitachyzoitesin vitroandin vivoindicates that spiroindolone is a promising lead candidate for further medicine development.


2012 ◽  
Vol 56 (6) ◽  
pp. 3207-3215 ◽  
Author(s):  
Katrin Ingram ◽  
William Ellis ◽  
Jennifer Keiser

ABSTRACTInteresting antischistosomal properties have been documented for the antimalarial mefloquine, a 4-quinolinemethanol. We evaluated the antischistosomal activities of nine mefloquine-related compounds belonging to the 4-pyridinemethanols, 9-phenanthrenmethanols, and 4-quinolinemethanols. Eight compounds revealed high activities againstSchistosoma mansoni in vitro, with two drugs (the 4-quinolinemethanols WR7573 and WR7930) characterized by significantly lower half-maximal inhibitory concentrations (IC50s) (2.7 and 3.5 μM, respectively) compared to mefloquine (11.4 μM). Mefloquine and WR7930 showed significantly decreased IC50s when incubated in the presence of hemoglobin. High worm burden reductions (WBR) were obtained with enpiroline (WBR, 82.7%; dosage, 200 mg/kg of body weight) and itsthreoisomers (+)-threo(WBR, 100%) and (−)-threo(WBR, 89%) and with WR7930 (WBR, 87%; dosage, 100 mg/kg) against adultS. mansoniin mice. Furthermore, excellentin vitroandin vivoantischistosomal activity was observed for two WR7930-related structures (WR29252 and WR7524). In addition, mefloquine (WBR, 81%), enpiroline (WBR, 77%), and WR7930 (WBR, 100%) showed high activities againstS. haematobiumharbored in mice following single oral doses of 200 mg/kg. These results provide a deeper insight into the structural features of the arylmethanols that rule antischistosomal activity. Further studies should be launched with enpiroline and WR7930.



2014 ◽  
Vol 59 (1) ◽  
pp. 690-692 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Dora I. McCarthy ◽  
Rosie Bocanegra ◽  
...  

ABSTRACTThein vitroandin vivoactivity of the inositol acyltransferase inhibitor E1210 was evaluated against echinocandin-resistantCandida albicans. E1210 demonstrated potentin vitroactivity, and in mice with invasive candidiasis caused by echinocandin-resistantC. albicans, oral doses of 10 and 40 mg E1210/kg of body weight twice daily significantly improved survival and reduced fungal burden compared to those of controls and mice treated with caspofungin (10 mg/kg/day). These results demonstrate the potential use of E1210 against resistantC. albicansinfections.



2001 ◽  
Vol 45 (11) ◽  
pp. 3234-3237 ◽  
Author(s):  
Peter D. Walzer ◽  
Alan Ashbaugh ◽  
Margaret Collins ◽  
Melanie T. Cushion

ABSTRACT Quinupristin-dalfopristin (Q-D), which is active against bacteria and Toxoplasma gondii, was examined for its activity against Pneumocystis carinii. After 72 h of incubation with rat P. carinii in an ATP cytotoxicity assay, the 50% inhibitory concentration of Q-D was 10.6 μg/ml, a level that can be achieved in serum with high-dose administration. Q-D administered intraperitoneally at doses of 50 to 200 mg per kg of body weight per day in the treatment and 100 mg/kg/day three times per week in the prophylaxis of pneumocystosis in immunosuppressed mice reduced the organism burden up to 15- and 302-fold, respectively. We conclude that Q-D has activity against P. carinii in vitro and in vivo.



2014 ◽  
Vol 59 (2) ◽  
pp. 1341-1343 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Rosie Bocanegra ◽  
Marcos Olivo ◽  
...  

ABSTRACTWe evaluated thein vitroandin vivoactivities of the investigational arylamidine T-2307 against echinocandin-resistantCandida albicans. T-2307 demonstrated potentin vitroactivity, and daily subcutaneous doses between 0.75 and 6 mg/kg of body weight significantly improved survival and reduced fungal burden compared to placebo control and caspofungin (10 mg/kg/day) in mice with invasive candidiasis caused by an echinocandin-resistant strain. Thus, T-2307 may have potential use in the treatment of echinocandin-resistantC. albicansinfections.



mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Geetha Kannan ◽  
Manlio Di Cristina ◽  
Aric J. Schultz ◽  
My-Hang Huynh ◽  
Fengrong Wang ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous pathogen that can cause encephalitis, congenital defects, and ocular disease. T. gondii has also been implicated as a risk factor for mental illness in humans. The parasite persists in the brain as slow-growing bradyzoites contained within intracellular cysts. No treatments exist to eliminate this form of parasite. Although proteolytic degradation within the parasite lysosome-like vacuolar compartment (VAC) is critical for bradyzoite viability, whether other aspects of the VAC are important for parasite persistence remains unknown. An ortholog of Plasmodium falciparum chloroquine resistance transporter (CRT), TgCRT, has previously been identified in T. gondii. To interrogate the function of TgCRT in chronic-stage bradyzoites and its role in persistence, we knocked out TgCRT in a cystogenic strain and assessed VAC size, VAC digestion of host-derived proteins and parasite autophagosomes, and the viability of in vitro and in vivo bradyzoites. We found that whereas parasites deficient in TgCRT exhibit normal digestion within the VAC, they display a markedly distended VAC and their viability is compromised both in vitro and in vivo. Interestingly, impairing VAC proteolysis in TgCRT-deficient bradyzoites restored VAC size, consistent with a role for TgCRT as a transporter of products of digestion from the VAC. In conjunction with earlier studies, our current findings suggest a functional link between TgCRT and VAC proteolysis. This study provides further evidence of a crucial role for the VAC in bradyzoite persistence and a new potential VAC target to abate chronic Toxoplasma infection. IMPORTANCE Individuals chronically infected with the intracellular parasite Toxoplasma gondii are at risk of experiencing reactivated disease that can result in progressive loss of vision. No effective treatments exist for chronic toxoplasmosis due in part to a poor understanding of the biology underlying chronic infection and a lack of well-validated potential targets. We show here that a T. gondii transporter is functionally linked to protein digestion within the parasite lysosome-like organelle and that this transporter is necessary to sustain chronic infection in culture and in experimentally infected mice. Ablating the transporter results in severe bloating of the lysosome-like organelle. Together with earlier work, this study suggests the parasite’s lysosome-like organelle is vital for parasite survival, thus rendering it a potential target for diminishing infection and reducing the risk of reactivated disease.



2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.



2006 ◽  
Vol 50 (2) ◽  
pp. 803-805 ◽  
Author(s):  
Jennifer Keiser ◽  
Reto Brun ◽  
Bernard Fried ◽  
Jürg Utzinger

ABSTRACT We examined the effects of praziquantel and the artemisinins on adult Echinostoma caproni. In vitro, both praziquantel and the artemisinins exhibited exposure-response relationships. In vivo, worm burden reductions of 100% were achieved with single oral doses of praziquantel, artesunate, and artemether at 50, 700, and 1,100 mg/kg of body weight, respectively.



2011 ◽  
Vol 80 (3) ◽  
pp. 1156-1165 ◽  
Author(s):  
Viviana Pszenny ◽  
Paul H. Davis ◽  
Xing W. Zhou ◽  
Christopher A. Hunter ◽  
Vern B. Carruthers ◽  
...  

As an intracellular protozoan parasite,Toxoplasma gondiiis likely to exploit proteases for host cell invasion, acquisition of nutrients, avoidance of host protective responses, escape from the parasitophorous vacuole, differentiation, and other activities.T. gondiiserine protease inhibitor 1 (TgPI1) is the most abundantly expressed protease inhibitor in parasite tachyzoites. We show here that alternative splicing produces twoTgPI1 isoforms, both of which are secreted via dense granules into the parasitophorous vacuole shortly after invasion, become progressively more abundant over the course of the infectious cycle, and can be detected in the infected host cell cytoplasm. To investigateTgPI1 function, the endogenous genomic locus was disrupted in the RH strain background. ΔTgPI1 parasites replicate normally as tachyzoites but exhibit increased bradyzoite gene transcription and labeling of vacuoles withDolichos bifloruslectin under conditions promotingin vitrodifferentiation. The differentiation phenotype can be partially complemented by eitherTgPI1 isoform. Mice infected with the ΔTgPI1 mutant display ∼3-fold-increased parasite burden in the spleen and liver, and thisin vivophenotype is also complemented by eitherTgPI1 isoform. These results demonstrate thatTgPI1 influences both parasite virulence and bradyzoite differentiation, presumably by inhibiting parasite and/or host serine proteases.



2016 ◽  
Vol 60 (5) ◽  
pp. 2932-2940 ◽  
Author(s):  
Douglas R. Rice ◽  
Paola Vacchina ◽  
Brianna Norris-Mullins ◽  
Miguel A. Morales ◽  
Bradley D. Smith

ABSTRACTCutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes towardLeishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy ofL. majorpromastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using anin vitroassay. All tested complexes exhibited selective toxicity againstL. majoraxenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages.In vivotreatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. majorin a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.



2015 ◽  
Vol 59 (6) ◽  
pp. 3271-3280 ◽  
Author(s):  
Luiz Francisco Rocha e Silva ◽  
Karla Lagos Nogueira ◽  
Ana Cristina da Silva Pinto ◽  
Alejandro Miguel Katzin ◽  
Rodrigo A. C. Sussmann ◽  
...  

ABSTRACT4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated fromPiper peltatumroots.O-Acylation orO-alkylation of compound1provides derivatives exhibiting improved stability and significantin vitroantiplasmodial activity. The aim of this work was to study thein vitroinhibition of hemozoin formation, inhibition of isoprenoid biosynthesis inPlasmodium falciparumcultures, andin vivoantimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibitedin vitrohemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester2significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone8, menaquinone4, and dolichol12in cultures ofP. falciparum3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol12.P. falciparumin vitroprotein synthesis was not affected by compounds2or3. At oral doses of 50 mg per kg of body weight per day, compound2suppressedPlasmodium bergheiNK65 in infected BALB/c mice by 44%. Thisin vivoresult for derivative2represents marked improvement over that obtained previously for natural product1. Compound2was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasmain vitro. However, it was detected afterin vitrocontact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential.



Sign in / Sign up

Export Citation Format

Share Document