scholarly journals In vitro activities of beta-lactam-beta-lactamase inhibitor combinations against Stenotrophomonas maltophilia: correlation between methods for testing inhibitory activity, time-kill curves, and bactericidal activity.

1997 ◽  
Vol 41 (12) ◽  
pp. 2612-2615 ◽  
Author(s):  
J L Muñoz Bellido ◽  
S Muñoz Criado ◽  
I García García ◽  
M A Alonso Manzanares ◽  
M N Gutiérrez Zufiaurre ◽  
...  

The activities of ampicillin, ampicillin-sulbactam, amoxicillin, amoxicillin-clavulanic acid, ticarcillin, ticarcillin-clavulanic acid, piperacillin, piperacillin-tazobactam, aztreonam, and aztreonam-clavulanic against Stenotrophomonas maltophilia strains for which the MICs of penicillins and commercially available beta-lactam-beta-lactamase inhibitor combinations were higher than the breakpoints usually recommended for Pseudomonas aeruginosa in commercially available broth microdilution methods were tested by the agar diffusion, agar dilution, and broth microdilution methods. Time-kill curve studies were performed when discrepancies between these methods were observed. The MICs obtained by the commercially available broth microdilution method, the agar dilution method, and the broth microdilution method were almost identical. Twenty-five percent of the strains tested showed inhibition diameters of > or =15 mm for ticarcillin-clavulanic acid, and 43.7% of the strains tested showed inhibition diameters of > or =18 mm for piperacillin-tazobactam by the agar diffusion method. The time-kill curves for these strains confirmed the results obtained by dilution methods. Aztreonam-clavulanic acid (2:1) at concentrations of < or =16 microg/ml inhibited all of these strains (MIC range, 1 to 16 microg/ml). The time-kill curves confirmed this activity. The addition of piperacillin to this combination did not modify the MICs. The combination aztreonam-clavulanic acid-ticarcillin was two- to fourfold more active than aztreonam-clavulanic acid alone. We studied the inhibitory and bactericidal activities of the two most active combinations (aztreonam-clavulanic acid and aztreonam-clavulanic acid-ticarcillin) against the standard inoculum and 10 and 50 times the standard inoculum. Inoculum modifications did not modify the MICs. Both combinations showed good bactericidal activity against the standard inoculum. With 10 times the standard inoculum, minimum bactericidal concentration (MBC) results were heterogeneous (for 55% of the strains, MBCs were between the MIC and 4-fold the MIC, and for 45% of the strains MBCs were between 8- and >32-fold the MIC). With 50 times the standard inoculum, MBCs were at least 32-fold the MICs for all the strains tested.

1997 ◽  
Vol 41 (1) ◽  
pp. 129-134 ◽  
Author(s):  
E L Fasola ◽  
S Bajaksouzian ◽  
P C Appelbaum ◽  
M R Jacobs

Susceptibilities of 124 strains of Streptococcus pneumoniae to erythromycin and clindamycin were determined by the National Committee for the Clinical Laboratory Standards (NCCLS) broth microdilution method, with incubation for 20 to 24 h in ambient air and with modifications of this method by incubation for up to 48 h in air and CO2. Strains were also tested by agar dilution, E-test, and disk diffusion; good correlation was obtained with these methods, with clear separation into bimodal populations of susceptible and resistant stains. The broth microdilution method, however, using incubation in air for 24 h (NCCLS method), misclassified 4 of 92 erythromycin-resistant strains (1 as susceptible and 3 as intermediate) and 25 of 58 clindamycin-resistant strains (all as susceptible). With the exception of one strain with clindamycin, susceptible and resistant strains were correctly classified by the microdilution method with incubation in CO2 for 24 h or in ambient air for 48 h. Disk diffusion, agar dilution, and E-test methods with incubation in 5% CO2 are therefore reliable methods for susceptibility testing of pneumococci against these agents. However, the NCCLS microdilution method, which specifies incubation for 20 to 24 h in ambient air, produced significant very major errors (43%) clindamycin. Modification of the microdilution method by incubation in 5% CO2 or by extension of incubation time in ambient air to 48 h corrected these errors. Disk diffusion, however, was shown to be a simple, convenient, and reliable method for susceptibility testing of pneumococci to erythromycin and clindamycin and is suggested as the method of choice for these agents.


1997 ◽  
Vol 41 (1) ◽  
pp. 148-155 ◽  
Author(s):  
S K Spangler ◽  
M R Jacobs ◽  
P C Appelbaum

Agar dilution MIC methodology was used to test the activities of GV 118819X (sanfetrinem), ampicillin, amoxicillin, amoxicillin-clavulanate, cefpodoxime, loracarbef, levofloxacin, clarithromycin, ceftriaxone, imipenem, and vancomycin against 53 penicillin-susceptible, 84 penicillin-intermediate and 74 penicillin-resistant pneumococci isolated in the United States. GV 118819X was the most active oral beta-lactam, with MIC at which 50% of the isolates were inhibited (MIC50)/MIC90 values of 0.008/0.03, 0.06/0.5, and 0.5/1.0 micrograms/ml against penicillin-susceptible, -intermediate, and -resistant stains, respectively. Amoxicillin and amoxicillin in the presence of clavulanate (2:1) were the second most-active oral beta-lactams, followed by ampicillin and cefpodoxime; loracarbef was not active against penicillin-intermediate and -resistant strains. Clarithromycin was most active against penicillin-susceptible strains but was less active against intermediate and resistant stains. All pneumococcal stains were inhibited by ceftriaxone and imipenem at MICs of < or = 4.0 and < or = 1.0 micrograms/ml, respectively. The activities of levofloxacin and vancomycin were unaffected by penicillin susceptibility. Time-kill studies of three penicillin-susceptible, three penicillin-intermediate, and three penicillin-resistant pneumococci showed that all compounds, at the broth microdilution MIC, yielded 99.9% killing of all strains after 24 h. Kinetic patterns of all oral beta-lactams, ceftriaxone, and vancomycin were similar relative to the MIC, with 90% killing of all strains first observed after 12 h. However, killing by amoxicillin-clavulanate, imipenem, and levofloxacin was slightly faster and that by clarithromycin was slower than that by the above-described drugs. At 2 x the MIC, more strains were killed earlier than was the case at the MIC, but the pattern seen at the MIC prevailed. When MICs and kill kinetics were combined, sanfetrinem was the most active oral antipneumococcal agent in this study.


1998 ◽  
Vol 36 (8) ◽  
pp. 2386-2388 ◽  
Author(s):  
Luis Alcalá ◽  
Fernando García-Garrote ◽  
Emilia Cercenado ◽  
Teresa Peláez ◽  
Gema Ramos ◽  
...  

Susceptibility testing of Eikenella corrodens is usually performed by a Mueller-Hinton sheep blood agar dilution (AD) method. However, this method is impractical for testing only a few strains. We compared AD with the broth microdilution method usingHaemophilus test medium (HTM) in order to determine the susceptibility of 36 clinical isolates of E. corrodens to eight antimicrobial agents. MICs obtained by the HTM method yielded 95.5 and 84% agreement (within 2 and 1 log2 dilutions, respectively) with those obtained by AD. The HTM method with incubation in CO2 for 48 h was highly reproducible and constitutes an easy alternative for antimicrobial susceptibility testing of E. corrodens.


2020 ◽  
Author(s):  
Qiuxia Lin ◽  
Hua Zou ◽  
Xian Chen ◽  
Menglu Wu ◽  
Deyu Ma ◽  
...  

Abstract Background: Treatment options for Stenotrophomonas maltophilia (S. maltophilia) infections were limited. We assessed the efficacy of ceftazidime-avibactam (CAZ-AVI) and aztreonam-avibactam (ATM-AVI) against a selection of 76 S. maltophilia out of the 1179 strains isolated from the First Affiliated Hospital of Chongqing Medical University during 2011-2018. Methods: We investigated the antimicrobial resistance profiles of the 1179 S. maltophilia clinical isolates from the first affiliated hospital of Chongqing Medical University during 2011-2018, a collection of 76 isolates of which were available for further study of microbiological characterization. Minimum inhibitory concentrations (MICs) of ceftazidime (CAZ), ceftazidime-avibactam (CAZ-AVI), aztreonam (ATM) and aztreonam-avibactam (ATM-AVI) were determined via the broth microdilution method. We deemed that CAZ-AVI or ATM-AVI was more effective in vitro than CAZ or ATM alone when CAZ-AVI or ATM-AVI led to a category change from “Resistant” with CAZ or ATM alone to “Susceptible” or “Intermediate” with CAZ-AVI or ATM-AVI, or if the MIC of CAZ-AVI or ATM-AVI was at least 2-fold lower than the MIC of CAZ or ATM alone. Results: For the 76 clinical isolates included in the study, MICs of CAZ, ATM, CAZ-AVI and ATM-AVI ranged from 0.03-64, 1-1024, 0.016-64, and 0.06-64 μg/mL, respectively. In combined therapy, AVI was effective at restoring the susceptibility of 48.48% (16/33) and 89.71% (61/68) of S. maltophilia to CAZ and ATM, respectively. Furthermore, CAZ-AVI showed better results in terms of the proportion of susceptible isolates (77.63% vs.56.58%, P<0.001), MIC50 (2μg/mL vs. 8μg/mL, P<0.05), and MIC distribution (P<0.001) when compared to CAZ. According to our definition, CAZ-AVI was more effective in vitro than CAZ alone for 84.21% of the isolates. Similarly, ATM-AVI also showed better results in terms of the proportion of susceptible isolates (90.79%vs. 10.53%, P<0.001), MIC50 (2μg/mL vs. 64μg/mL, P<0.001), and MIC distribution (P<0.001) when compared to ATM. According to our definition, ATM-AVI was also more effective in vitro than ATM alone for 97.37% of the isolates. Conclusions: AVI potentiated the activity of both CAZ and ATM against S. maltophilia clinical isolates in vitro. We demonstrated that CAZ-AVI and ATM-AVI are both useful therapeutic options to treat infections caused by S. maltophilia.


2021 ◽  
Author(s):  
Qian-Qian Li ◽  
Ok-Hwa Kang ◽  
Dong-Yeul Kwon

Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA) has always been a thorny pathogen, posing serious threat to public health. Current treatment resort for MRSA infections is still scarce. Research on phytochemical component that can replace antibiotics with limited efficacy may be an innovative method to solve intractable MRSA infections. The present study was devoted to investigating the antibacterial activity of the natural compound demethoxycurcumin (DMC) against MRSA and exploring its possible mechanism for eliminating MRSA resistance. Methods The present study determined minimum inhibitory concentrations (MICs) of DMC, oxacillin, ampicillin and gentamicin against MRSA strains by the broth microdilution method. The synergistic effects of DMC and antibiotics were investigated by the checkerboard method and the time-kill assay. The membrane-permeabilizing agents and ATP synthase inhibitors were employed to explore their impact on the antibacterial ability of DMC. Western blot analysis and qRT-PCR were performed to detect the proteins and genes related to drug resistance and S. aureus exotoxins. Results The MIC of DMC against MRSA is 62.5 µg/ml by broth microdilution method. The synergy between DMC and gentamicin was confirmed by checkerboard method and time-kill assay. When ATP synthase inhibitors blocked the metabolic ability of bacteria, the antibacterial effect of DMC was enhanced. The production of penicillin-binding protein 2a (PBP2a) protein and related genes were reduced by DMC at sub-inhibitory concentrations. In addition, DMC hindered the translation of staphylococcal enterotoxin and the transcription of related gene. Conclusions Based on our results, DMC has a significant inhibitory effect on the vitality of MRSA, and it can be inferred that the mechanism by which DMC reverses MRSA resistance is related to the ability of DMC to block resistance determinants (PBP2a and β-lactamase) and S. aureus exotoxin. This study provides experimental evidences that DMC has the potential to be a candidate substance for the treatment of MRSA infections.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuxia Lin ◽  
Hua Zou ◽  
Xian Chen ◽  
Menglu Wu ◽  
Deyu Ma ◽  
...  

Abstract Background Treatment options for Stenotrophomonas maltophilia (S. maltophilia) infections were limited. We assessed the efficacy of ceftazidime (CAZ), ceftazidime-avibactam (CAZ-AVI), aztreonam (ATM), and aztreonam-avibactam (ATM-AVI) against a selection of 76 S. maltophilia out of the 1179 strains isolated from the First Affiliated Hospital of Chongqing Medical University during 2011–2018. Methods We investigated the antimicrobial resistance profiles of the 1179 S. maltophilia clinical isolates from the first affiliated hospital of Chongqing Medical University during 2011–2018, a collection of 76 isolates were selected for further study of microbiological characterization. Minimum inhibitory concentrations (MICs) of CAZ, CAZ-AVI, ATM and ATM-AVI were determined via the broth microdilution method. We deemed that CAZ-AVI or ATM-AVI was more active in vitro than CAZ or ATM alone when CAZ-AVI or ATM-AVI led to a category change from “Resistant” or “Intermediate” with CAZ or ATM alone to “Susceptible” with CAZ-AVI or ATM-AVI, or if the MIC of CAZ-AVI or ATM-AVI was at least 4-fold lower than the MIC of CAZ or ATM alone. Results For the 76 clinical isolates included in the study, MICs of CAZ, ATM, CAZ-AVI and ATM-AVI ranged from 0.03–64, 1–1024, 0.016–64, and 0.06–64 μg/mL, respectively. In combined therapy, AVI was active at restoring the activity of 48.48% (16/33) and 89.71% (61/68) of S. maltophilia to CAZ and ATM, respectively. Furthermore, CAZ-AVI showed better results in terms of the proportion of susceptible isolates (77.63% vs. 56.58%, P < 0.001), and MIC50 (2 μg/mL vs. 8 μg/mL, P < 0.05) when compared to CAZ. According to our definition, CAZ-AVI was more active in vitro than CAZ alone for 81.58% (62/76) of the isolates. Similarly, ATM-AVI also showed better results in terms of the proportion of susceptible isolates (90.79% vs.10.53%, P < 0.001) and MIC50 (2 μg/mL vs. 64 μg/mL, P < 0.001) when compared to ATM. According to our definition, ATM-AVI was also more active in vitro than ATM alone for 94.74% (72/76) of the isolates. Conclusions AVI potentiated the activity of both CAZ and ATM against S. maltophilia clinical isolates in vitro. We demonstrated that CAZ-AVI and ATM-AVI are both useful therapeutic options to treat infections caused by S. maltophilia.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Yu Nagira ◽  
Keiko Yamada ◽  
Hayato Okade ◽  
Nami Senju ◽  
Yuko Tsutsumi ◽  
...  

Abstract Background Nacubactam (NAC) is a novel serine β-lactamase inhibitor in clinical development, and inhibits Ambler class A, class C, and some class D β-lactamases. In addition, it has penicillin-binding protein (PBP) 2-dependent antibacterial activity and an ‘enhancer’ effect when combined with β-lactams bound to PBP3. This study assessed the in vitro activity of NAC alone and in combination with β-lactams against IMP-type metallo-β-lactamase-producing and ESBL-producing Enterobacterales isolated in Japan. Methods The MICs for the clinical isolates in Japan were determined and time kill studies were performed. IMP and ESBL genes were detected by PCR. The MICs were determined by broth microdilution method following CLSI methodology. β-lactams and NAC were tested as a ratio of 1:1. Time kill profiles were also studied according to CLSI methodology. Results The MIC50/MIC90s of NAC alone against 112 IMP-producing Enterobacterales and 154 ESBL-producing Enterobacterales were 2/ &gt;32 and 2/8 mg/L, respectively. Regarding the MICs of cefepime (FEP)/NAC and aztreonam (ATM)/NAC against IMP-producing isolates, the MIC90s were 2 and 1 mg/L and the MIC ranges were 0.06 - 32 and 0.06 - 4 mg/L, respectively. The MIC90s of FEP/NAC and ATM/NAC against ESBL-producing isolates were 0.5 and 1 mg/L. These MIC90s of β-lactam/NAC against IMP-producing and ESBL-producing isolates were significantly lower than those of β-lactam alone (&gt;128 mg/L). The highest MIC of ATM/NAC against IMP-producing isolates was lower than that of FEP/NAC. In addition, bactericidal activities of β-lactam/NAC were observed at the lower concentration of β-lactam compared to that of β-lactam alone. Conclusion NAC in combination with β-lactams showed excellent in vitro activities against not only ESBL-producing Enterobacterales but also IMP-producing Enterobacterales isolated in Japan. ATM/NAC tended to show higher antimicrobial effect against IMP-producing isolates by the enzyme stability of ATM. These results support the complex activities of NAC which works as a β-lactamase inhibitor, an antibacterial agent and also an enhancer when combined with β-lactams. Furthermore, these will be useful for selecting a partner β-lactam for NAC. Disclosures Yu Nagira, MS, Meiji Seika Pharma Co., Ltd. (Employee) Keiko Yamada, BS, Meiji Seika Pharma Co., Ltd. (Employee) Hayato Okade, Ph.D, Meiji Seika Pharma Co., Ltd. (Employee) Nami Senju, BS, Meiji Seika Pharma Co., Ltd. (Employee) Yuko Tsutsumi, MS, Meiji Seika Pharma Co., Ltd. (Employee) Yuji Tabata, Ph.D, Meiji Seika Pharma Co., Ltd. (Employee)


2004 ◽  
Vol 48 (3) ◽  
pp. 832-837 ◽  
Author(s):  
Alejandra Gomez-Flores ◽  
Oliverio Welsh ◽  
Salvador Said-Fernández ◽  
Gerardo Lozano-Garza ◽  
Roman Erick Tavarez-Alejandro ◽  
...  

ABSTRACT In Mexico mycetomas are mostly produced by Nocardia brasiliensis, which can be isolated from about 86% of cases. In the present work, we determined the sensitivities of 30 N. brasiliensis strains isolated from patients with mycetoma to several groups of antimicrobials. As a first screening step we carried out disk diffusion assays with 44 antimicrobials, including aminoglycosides, cephalosporins, penicillins, quinolones, macrolides, and some others. In these assays we observed that some antimicrobials have an effect on more than 66% of the strains: linezolid, amikacin, gentamicin, isepamicin, netilmicin, tobramycin, minocycline, amoxicillin-clavulanic acid, piperacillin-tazobactam, nitroxolin, and spiramycin. Drug activity was confirmed quantitatively by the broth microdilution method. Amoxicillin-clavulanic acid, linezolid, and amikacin, which have been used to treat patients, were tested in an experimental model of mycetoma in BALB/c mice in order to validate the in vitro results. Linezolid showed the highest activity in vivo, followed by the combination amoxicillin-clavulanic acid and amikacin.


Sign in / Sign up

Export Citation Format

Share Document