Natural Transformation of Gallibacterium anatis
ABSTRACTGallibacterium anatisis a pathogen of poultry. Very little is known about its genetics and pathogenesis. To enable the study of gene function inG. anatis, we have established methods for transformation and targeted mutagenesis. The genusGallibacteriumbelongs to thePasteurellaceae, a group with several naturally transformable members, includingHaemophilus influenzae. Bioinformatics analysis identifiedG. anatishomologs of theH. influenzaecompetence genes, and natural competence was induced inG. anatisby the procedure established forH. influenzae: transfer from rich medium to the starvation medium M-IV. This procedure gave reproducibly high transformation frequencies withG. anatischromosomal DNA and with linearized plasmid DNA carryingG. anatissequences. Both DNA types integrated into theG. anatischromosome by homologous recombination. Targeted mutagenesis gave transformation frequencies of >2 × 10−4transformants CFU−1. Transformation was also efficient with circular plasmid containing noG. anatisDNA; this resulted in the establishment of a self-replicating plasmid. Nine diverseG. anatisstrains were found to be naturally transformable by this procedure, suggesting that natural competence is common and the M-IV transformation procedure widely applicable for this species. TheG. anatisgenome is only slightly enriched for the uptake signal sequences identified in other pasteurellaceaen genomes, butG. anatisdid preferentially take up its own DNA over that ofEscherichia coli. Transformation by electroporation was not effective for chromosomal integration but could be used to introduce self-replicating plasmids. The findings described here provide important tools for the genetic manipulation ofG. anatis.